Muutke küpsiste eelistusi

Associative Algebraic Geometry [Kõva köide]

(University Of South-eastern Norway, Norway)
  • Formaat: Hardback, 420 pages
  • Ilmumisaeg: 10-Mar-2023
  • Kirjastus: World Scientific Europe Ltd
  • ISBN-10: 1800613547
  • ISBN-13: 9781800613546
Teised raamatud teemal:
  • Formaat: Hardback, 420 pages
  • Ilmumisaeg: 10-Mar-2023
  • Kirjastus: World Scientific Europe Ltd
  • ISBN-10: 1800613547
  • ISBN-13: 9781800613546
Teised raamatud teemal:
Classical Deformation Theory is used for determining the completions of local rings of an eventual moduli space. When a moduli variety exists, the main result explored in the book is that the local ring in a closed point can be explicitly computed as an algebraization of the pro-representing hull, called the local formal moduli, of the deformation functor for the corresponding closed point.The book gives explicit computational methods and includes the most necessary prerequisites for understanding associative algebraic geometry. It focuses on the meaning and the place of deformation theory, resulting in a complete theory applicable to moduli theory. It answers the question 'why moduli theory', and gives examples in mathematical physics by looking at the universe as a moduli of molecules, thereby giving a meaning to most noncommutative theories.The book contains the first explicit definition of a noncommutative scheme, not necessarily covered by commutative rings. This definition does not contradict any previous abstract definitions of noncommutative algebraic geometry, but sheds interesting light on other theories, which is left for further investigation.
Preface v
About the Author ix
Acknowledgments xi
1 Introduction
1(24)
1.1 Associative Algebra
2(11)
1.2 Deformation Theory
13(2)
1.3 Affine Varieties as Moduli of Modules
15(3)
1.4 Affine Associative Varieties
18(3)
1.5 Associative Varieties
21(1)
1.6 Associative Schemes
22(3)
2 Basic Introduction to Associative Moduli
25(28)
2.1 Introduction
25(1)
2.2 Preliminaries
25(2)
2.3 Generalized Moduli Objects
27(10)
2.4 Associative Moduli and Adjoint Functors
37(2)
2.5 Categorification of Deformation Theory
39(6)
2.6 Geometry in Moduli Objects
45(2)
2.7 A Naive Framework for Change
47(3)
2.8 Concluding a Naive Framework for Change
50(3)
3 Associative Algebra
53(38)
3.1 Noncommutative Algebras
53(3)
3.2 Artin-Wedderburn Theory
56(3)
3.3 Simple Modules and the Jacobson Radical
59(2)
3.4 The Classical Theorems of Burnside, Wedderburn and Malcev
61(1)
3.5 Finite-Dimensional Simple Modules
62(3)
3.6 Matrix Spaces over kr
65(2)
3.7 Matric kr-Algebras
67(2)
3.8 Quiver Algebras
69(3)
3.9 GMMP Algebras
72(2)
3.10 The Category of r-Pointed Artinian k-Algebras
74(1)
3.11 Constructing kr-Algebras from Products
75(3)
3.12 The Algebra of an n-Directed GMMP-Algebra
78(8)
3.13 A Direct Example of a GMMP-Algebra
86(1)
3.14 Dynamical Algebras
87(4)
4 Associative Varieties I
91(26)
4.1 Associative Representations of Modules
93(5)
4.2 Associative Varieties
98(2)
4.3 Affinity of Associative Varieties
100(6)
4.4 Associative Gluing of Affine Commutative Varieties
106(4)
4.5 The Structure Sheaf of an Associative Variety
110(3)
4.6 The Functor Simp(---): AlgMk → aVarMk
113(4)
5 Noncommutative Deformation Theory
117(48)
5.1 Prorepresentable Functors
118(6)
5.2 The Noncommutative Deformation Functor
124(2)
5.3 The Tangent and the Yoneda Complex
126(2)
5.4 Obstruction Theory
128(5)
5.5 Computation of Prorepresenting Hulls with a Guiding Example
133(19)
5.6 Generalized Matric Massey Products
152(2)
5.7 The Algebra of Observables
154(2)
5.8 Local Representability of the Deformation Functor
156(2)
5.9 The Generalized Burnside Theorem
158(1)
5.10 Generalized Obstruction Theory
158(1)
5.11 Deformation of Sheaves of Ox-Modules
158(5)
5.12 Concluding Remarks
163(2)
6 Associative Varieties II
165(50)
6.1 Representable Functors, Universal Properties and Sheaves
165(5)
6.2 Ordinary Varieties
170(1)
6.3 Associative Varieties
171(2)
6.4 Commutative Affine Schemes
173(1)
6.5 Associative Affine Varieties
174(4)
6.6 Associative Affine Varieties of Geometric Algebras
178(1)
6.7 A First Example
178(4)
6.8 Defining Associative Varieties
182(2)
6.9 Deformations Due to Diagrams
184(7)
6.10 The Definition of Noncommutative Schemes
191(1)
6.11 Tangent Spaces of Matric Algebras
192(2)
6.12 A Comment on Multi-Localization
194(4)
6.13 Example
198(1)
6.14 Generalized Matric Massey Products
199(3)
6.15 Reconstructing Algebras from Associative Varieties
202(3)
6.16 The Embedding Vark → aVark
205(5)
6.17 The Embedding of Ordinary (Commutative) Varieties in the Category of Associative Varieties
210(5)
7 Computational Examples of Associative Varieties
215(58)
7.1 Set-Up for Noncommutative Projective Spaces
215(1)
7.2 Associative Varieties of Point-Modules
216(2)
7.3 Some Results from the Commutative Case
218(7)
7.4 The Associative Affine Plane
225(3)
7.5 The Associative Noncommutative Variety Pnass
228(4)
7.6 Noncommutative Projective Varieties
232(1)
7.7 The Quantum Plane
233(1)
7.8 The Jordan Plane
234(1)
7.9 The Quantum Polynomial Ring
235(1)
7.10 A Sklyanin Algebra
236(2)
7.11 To the Classification of AS Regular Algebras
238(1)
7.12 Associative Projective Varieties
238(8)
7.13 Noncommutative Projective Varieties
246(2)
7.14 Example: The Associative Quantum Plane
248(6)
7.15 The Generalized Burnside Theorem and Some Consequences
254(2)
7.16 Sheaves of Ox-Modules
256(8)
7.17 Classifying 1-Critical Modules
264(3)
7.18 Associative Schemes
267(6)
8 Algebraic Invariant Theory
273(34)
8.1 Basic Definitions
273(1)
8.2 Fine Moduli for Orbits
274(3)
8.3 Constructive Method for Noncommutative GIT
277(2)
8.4 Applications of Noncommutative GIT
279(1)
8.5 GL(n)-Quotients of Endk(kn)
279(2)
8.6 The Setup for M3(k)
281(1)
8.7 The Fine Moduli M2(k)/GL2(k)
282(1)
8.8 Toric Varieties
283(2)
8.9 A Toric Example
285(2)
8.10 N-Lie Algebras
287(2)
8.11 The Structure of 3 --- Lie4
289(6)
8.12 Moduli of Rank 2 Endomorphisms
295(12)
9 Pre-Dynamic GIT
307(32)
9.1 Generalities
307(12)
9.2 Blowing Up and Desingularization
319(3)
9.3 Chern Classes
322(1)
9.4 The Iterated Phase Space Functor Ph* and the Dirac Derivation
322(8)
9.5 The Generalized de Rham Complex
330(5)
9.6 Excursion into the Jacobian Conjecture
335(4)
10 Dynamical Algebraic Structures
339(56)
10.1 Noncommutative Algebraic Geometry
339(1)
10.2 Moduli of Representations
340(1)
10.3 Blowing Down Subschemes
341(1)
10.4 Moduli of Simple Modules
341(1)
10.5 Evolution in the Moduli of Simple Modules
342(3)
10.6 Dynamical Structures
345(4)
10.7 Gauge Groups and Invariant Theory
349(5)
10.8 The Generic Dynamical Structures Associated to a Metric
354(17)
10.9 The Classical Gauge Invariance
371(4)
10.10 A Generalized Yang--Mills Theory
375(7)
10.11 Reuniting GR, YM and General Quantum Field Theory
382(7)
10.12 Closing Remarks
389(2)
10.13 Family of Representations versus Family of Metrics
391(2)
10.14 Relations to Clifford Algebras
393(2)
Bibliography 395(4)
Index 399