Muutke küpsiste eelistusi

Astronomy at High Angular Resolution: A Compendium of Techniques in the Visible and Near-Infrared 1st ed. 2016 [Kõva köide]

  • Formaat: Hardback, 274 pages, kõrgus x laius: 235x155 mm, kaal: 720 g, 88 Illustrations, color; 32 Illustrations, black and white; XVI, 274 p. 120 illus., 88 illus. in color., 1 Hardback
  • Sari: Astrophysics and Space Science Library 439
  • Ilmumisaeg: 12-Sep-2016
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319397370
  • ISBN-13: 9783319397375
  • Kõva köide
  • Hind: 113,55 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 133,59 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 274 pages, kõrgus x laius: 235x155 mm, kaal: 720 g, 88 Illustrations, color; 32 Illustrations, black and white; XVI, 274 p. 120 illus., 88 illus. in color., 1 Hardback
  • Sari: Astrophysics and Space Science Library 439
  • Ilmumisaeg: 12-Sep-2016
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319397370
  • ISBN-13: 9783319397375
This book offers an essential compendium of astronomical high-resolution techniques. Recent years have seen considerable developments in such techniques, which are critical to advances in many areas of astronomy. As reflected in the book, these techniques can be divided into direct methods, interferometry, and reconstruction methods, and can be applied to a huge variety of astrophysical systems, ranging from planets, single stars and binaries to active galactic nuclei, providing angular resolution in the micro- to tens of milliarcsecond scales. Written by experts in their fields, the chapters cover adaptive optics, aperture masking imaging, spectra disentangling, interferometry, lucky imaging, Roche tomography, imaging with interferometry, interferometry of AGN, AGN reverberation mapping, Doppler- and magnetic imaging of stellar surfaces, Doppler tomography, eclipse mapping, Stokes imaging, and stellar tomography.This book is intended to enable a next generation of astronomers t

o apply high-resolution techniques. It informs readers on how to achieve the best angular resolution in the visible and near-infrared regimes from diffraction-limited to micro-arcsecond scales.

Introduction by the editors.- Adaptive optics.- Aperture masking imaging.- Disentangling of stellar spectra.- Interferometry.- Lucky Imaging.- Roche tomography.- Spectro-astrometry.- Astrotomography of planets.- Adaptive optics of planets & disks.- Stellar surfaces with interferometry.- The Galactic Centre at high-angular resolution.- AGN interferometry.- AGN reverberation mapping.- Doppler and Magnetic Imaging of Stellar Surfaces.- Doppler Tomography.- Doppler Tomography of Polars.- Doppler Imaging of cool stars and brown dwarfs.- Eclipse Mapping.- Stokes Imaging.

Arvustused

Its thirteen chapters, written by specialists in their particular area, provide overviews of techniques within the overarching theme of high spatial resolution in the visible and near-IR. ... this compendium offers up a smorgasbord of enticements into new realms of exploration utilizing exciting instruments and the cleverest of analyses of their data. For some, this work will serve as their embarkation upon deeper treatments towards a potentially career-inspiring journey. (Harold A. McAlister, The Observatory, Vol. 137 (1260), October, 2017)

1 Lucky Imaging in Astronomy
1(16)
Wolfgang Brandner
Felix Hormuth
1.1 Motivations for Employing Lucky Imaging Techniques
1(1)
1.2 Atmospheric Seeing "101" and Lucky Imaging
2(4)
1.2.1 Angular Resolution and the Fried Parameter r0
3(1)
1.2.2 Strehl Ratio
3(1)
1.2.3 Coherence Time τto
3(1)
1.2.4 Probability of Lucky Imaging
4(2)
1.3 Lucky Imaging Precursors
6(1)
1.4 Technical Implementation
7(3)
1.5 Observing and Data Reduction Strategy
10(1)
1.6 Lucky Imaging Compared to Other High-Angular Resolution Techniques
11(2)
1.6.1 Passive Techniques
12(1)
1.6.2 Active Techniques
12(1)
1.6.3 Combining Passive and Active Techniques
12(1)
1.6.4 Additional Advantages and Limitations of Lucky Imaging
13(1)
1.7 Examples for Instrumentation and Science
13(1)
1.8 Summary and Outlook
14(3)
References
15(2)
2 Adaptive Optics in High-Contrast imaging
17(26)
Julien Milli
Dimitri Mawet
David Mouillet
Markus Kasper
Julien H. Girard
2.1 Introduction
17(5)
2.1.1 Science Case
17(1)
2.1.2 Requirements
18(3)
2.1.3 From Pioneering Adaptive Optics Experiments to Extreme Adaptive Optics System
21(1)
2.2 Fundamentals of High-Contrast Adaptive Optics Systems
22(3)
2.2.1 Characteristics of Images Distorted by the Atmospheric Turbulence
22(1)
2.2.2 Wavefront Sensing
23(2)
2.2.3 Deformable Mirror Technologies
25(1)
2.3 The Transition to Extreme AO Systems
25(9)
2.3.1 Wavefront Error Requirement for High Contrast
26(2)
2.3.2 Coronagraphy and Diffraction Control
28(2)
2.3.3 Low-Order Wavefront Sensing and Non-common Path Aberrations
30(1)
2.3.4 Observation Strategies for Improved Stability and Speckle Removal
30(4)
2.4 Science Highlights and New Challenges
34(3)
2.4.1 Discs at Very Short Separations
34(1)
2.4.2 Planets in the Visible
35(1)
2.4.3 Spectra of Exoplanets and Brown Dwarfs
36(1)
2.5 Conclusions and Future Challenges
37(6)
References
37(6)
3 Aperture Masking Imaging
43(16)
Michael J. Ireland
3.1 Introduction
43(1)
3.2 Narrow Field Imaging
44(3)
3.3 Non-redundant Aperture Masking
47(4)
3.4 Kernel and Bispectral Phase
51(3)
3.5 Applications of Aperture-Masking Imaging
54(2)
3.5.1 Precision Binary Astrometry
55(1)
3.5.2 Faint, Low-Strehl Imaging
55(1)
3.5.3 High-Contrast Imaging (e.g. LkCa 15)
55(1)
3.6 Conclusions
56(3)
References
57(2)
4 Optical Long Baseline Interferometry
59(16)
Jean-Baptiste Le Bouquin
4.1 Linking the Object to the Interference Fringes
59(3)
4.1.1 Interference of a Single Emitter
59(2)
4.1.2 Linearity Between the Emitter and the Fringes Displacements
61(1)
4.1.3 Integration Over Many Emitters
61(1)
4.2 Interpreting Interferometric Observations
62(7)
4.2.1 Partially Resolved: Diameter Measurements
62(3)
4.2.2 Parametric Analysis
65(2)
4.2.3 Aperture Synthesis Imaging
67(2)
4.3 Instrumentation Suite
69(3)
4.3.1 Observing Facilities
69(2)
4.3.2 Support and Observing Tools
71(1)
4.4 Conclusions
72(3)
References
72(3)
5 Image Reconstruction in Optical Interferometry: An Up-to-Date Overview
75(20)
Fabien Baron
5.1 Introduction
75(1)
5.2 Principles of Optical Interferometry
76(1)
5.3 Bayesian Framework of Image Reconstruction
77(1)
5.3.1 Bayes Equation for Image Reconstruction
77(1)
5.4 Likelihood
78(1)
5.4.1 Non-convexity and Multi-modality of the Likelihood
78(1)
5.5 Regularisation
79(7)
5.5.1 Separable Regularisation Functions
80(1)
5.5.2 Example of Regulariser: Prior Images
80(2)
5.5.3 Example of Regulariser: Multiscale Approaches and Compressed Sensing
82(2)
5.5.4 Regularisation Weight
84(2)
5.6 Optimisation Engines: The Software Landscape
86(4)
5.6.1 Stochastic vs Deterministic Approaches
86(3)
5.6.2 Fidelity of Current Reconstructions
89(1)
5.7 Conclusion
90(5)
References
90(5)
6 Tori, Discs, and Winds: The First Ten Years of AGN Interferometry
95(18)
Sebastian F. Honig
6.1 Active Galactic Nuclei 101
95(1)
6.2 The Dusty Environment
96(1)
6.3 Infrared Long-Baseline Interferometry of AGN: Pushing the Limits
97(1)
6.4 Science Results
98(10)
6.4.1 Sizes and What They Mean
98(3)
6.4.2 The Dust Is Clumpy, Indeed!
101(1)
6.4.3 The Inner Radius Scales with Luminosity, But What Kind of Dust Are We Seeing?
101(2)
6.4.4 Constraints on the Volume Filling Factor
103(2)
6.4.5 The Distribution of the Dust Revealed, But It Is Not Clear What It Means
105(2)
6.4.6 Where Is the Torus After All?
107(1)
6.5 Conclusions and Outlook
108(5)
References
110(3)
7 Disentangling of Stellar Spectra
113(24)
Petr Hadrava
7.1 Introduction
113(1)
7.2 Disentangling of Spectra of Multiple Stars
114(9)
7.2.1 Fourier Disentangling
116(2)
7.2.2 Generalised Disentangling
118(2)
7.2.3 Constrained Disentangling
120(2)
7.2.4 Numerical Representation
122(1)
7.3 Disentangling of Spectra of Interacting Binaries
123(14)
Appendix: Bayesian Estimation of Parameters Errors
125(9)
References
134(3)
8 Velocity Fields in Stellar Atmospheres Probed by Tomography
137(18)
Alain Jorissen
Sophie Van Eck
Kateryna Kravchenko
8.1 Introduction
137(2)
8.2 Method
139(4)
8.3 Results
143(8)
8.3.1 Application to the Mira Variables RT Cyg and RY Cep
143(1)
8.3.2 Other Pulsating Variables
144(3)
8.3.3 Supergiants
147(4)
8.4 Future Prospects: Transforming Optical Depths to Geometrical Depths to Access the Shock Velocity
151(4)
References
151(4)
9 Eclipse Mapping: Astrotomography of Accretion Discs
155(24)
Raymundo Baptista
9.1 Context and Motivations
155(1)
9.2 Principles and Inner Workings
156(6)
9.3 Performance and Limitations
162(4)
9.4 Error Propagation Procedures
166(1)
9.5 Applications
166(7)
9.5.1 Spectral Mapping: Spatially-Resolved Disc Spectra
166(2)
9.5.2 Time-Lapse Mapping: Dwarf Nova Outbursts
168(2)
9.5.3 Flickering Mapping: Revealing the Disc Viscosity
170(2)
9.5.4 3D Eclipse Mapping: Disc Opening Angle and Superhumps
172(1)
9.6 Summary
173(6)
References
174(5)
10 Stokes Imaging: Mapping the Accretion Region(s) in Magnetic Cataclysmic Variables
179(16)
Stephen B. Potter
10.1 Introduction
179(1)
10.2 Polarisation Modelling
180(3)
10.3 Stokes Imaging
183(1)
10.4 Photo-polarimetric Observations of the Eclipsing Polar CTCV J1928-5001
184(1)
10.5 Future Work: Stratified Accretion Shocks
185(4)
10.6 Future Work: Multi-tomography
189(6)
References
192(3)
11 Doppler Tomography
195(28)
Thomas R. Marsh
Axel D. Schwope
11.1 Introduction
195(1)
11.2 Principles of Doppler Tomography
196(11)
11.2.1 Coordinates
196(3)
11.2.2 3D Profile Formation
199(1)
11.2.3 2D Profile Formation
200(1)
11.2.4 Inversion
201(3)
11.2.5 Doppler Tomography Extras
204(2)
11.2.6 Codes for Doppler Tomography
206(1)
11.3 Doppler Tomography in Practice
207(3)
11.3.1 Spiral Shocks
207(1)
11.3.2 Donor Star Emission
208(1)
11.3.3 AM CVn Stars
208(2)
11.4 Doppler Tomography of Polars: Accretion Streams, Accretion Curtains and Half Stars
210(13)
11.4.1 Accretion Streams and Curtains
211(5)
11.4.2 Accretion Curtains in Asynchronous Polars
216(1)
11.4.3 The Donor Stars
217(2)
11.4.4 Summary on Polars
219(1)
References
219(4)
12 Tomographic Imaging of Stellar Surfaces and interacting Binary Systems
223(26)
Julien Morin
Colin Alastair Hill
Christopher Allan Watson
12.1 Doppler and Zeeman-Doppler Imaging of Stellar Surfaces
223(14)
12.1.1 Doppler Imaging as a Tool to Study Stellar Magnetism
223(2)
12.1.2 Principles of Doppler Imaging (DI)
225(2)
12.1.3 Measurements of Stellar Magnetic Fields and Zeeman-Doppler Imaging
227(5)
12.1.4 Zeeman-Doppler Imaging Science Highlights
232(5)
12.2 Roche Tomography
237(12)
12.2.1 The Motivation for Roche Tomography
237(1)
12.2.2 The Principles of Roche Tomography
238(1)
12.2.3 Roche Tomography: Early Maps
239(2)
12.2.4 Probing Stellar Activity
241(1)
12.2.5 Differential Rotation
242(1)
12.2.6 Future Prospects
243(1)
References
244(5)
13 AGN Reverberation Mapping
249(18)
Misty C. Bentz
13.1 Introduction and Motivation
249(1)
13.2 Reverberation Mapping Primer
250(4)
13.3 Reverberation Mapping Products
254(8)
13.3.1 Black Hole Masses
254(3)
13.3.2 Black Hole Scaling Relationships
257(2)
13.3.3 BLR Geometry and Kinematics
259(3)
13.4 Looking Ahead
262(5)
References
263(4)
Index 267
The editors of the book, H.M.J. Boffin, J.P. Berger, G. Hussain, and K. Schmidtobreick, all ESO staff, are experts in high-resolution astronomy. H. Boffin has extensive experience in editing books, including Astrotomography in the Springer Series Lecture Notes in Physics (2004) and The Ecology of Blue Straggler Stars published in the Springer series Astrophysics and Space Science Library (2015).