Muutke küpsiste eelistusi

Astrophysical Recipes: The art of AMUSE [Kõva köide]

(Leiden University, The Netherlands), (Drexel University, USA)
  • Formaat: Hardback, 410 pages, kõrgus x laius x paksus: 254x178x24 mm, kaal: 927 g, With figures in colour and in black and white
  • Sari: AAS-IOP Astronomy
  • Ilmumisaeg: 21-Dec-2018
  • Kirjastus: Institute of Physics Publishing
  • ISBN-10: 0750313218
  • ISBN-13: 9780750313216
Teised raamatud teemal:
  • Formaat: Hardback, 410 pages, kõrgus x laius x paksus: 254x178x24 mm, kaal: 927 g, With figures in colour and in black and white
  • Sari: AAS-IOP Astronomy
  • Ilmumisaeg: 21-Dec-2018
  • Kirjastus: Institute of Physics Publishing
  • ISBN-10: 0750313218
  • ISBN-13: 9780750313216
Teised raamatud teemal:
Preface xiii
Acknowledgements xvii
Author biographies xix
1 What is Computational Astrophysics?
1(1)
1.1 Computational Astrophysics
1(4)
1.1.1 Origin of This Book
1(1)
1.1.2 Hands-on is Hands-on
2(1)
1.1.3 What about the Math?
2(1)
1.1.4 Objective of This Book
3(1)
1.1.5 What is Missing from This Book
3(1)
1.1.6 Outline of the Book
4(1)
1.2 A Brief History of Simulations in Astrophysics
5(2)
1.2.1 The First Simulation Experiments
6(1)
1.3 Software Used in This Book
7(9)
1.3.1 Motivation for a Homogeneous Software Environment
7(2)
1.3.2 Choice of Programming Languages
9(1)
1.3.3 Design of AMUSE
10(2)
1.3.4 Terminology
12(1)
1.3.5 Installing AMUSE
13(2)
1.3.6 Running AMUSE
15(1)
1.4 Initial Conditions
16(14)
1.4.1 Particles and Particle Sets
17(2)
1.4.2 The Solar System
19(2)
1.4.3 The Plummer Sphere
21(3)
1.4.4 The Initial Mass Function
24(1)
1.4.5 Stellar Evolution
25(3)
1.4.6 Hydrodynamical Models
28(2)
References
30
2 Gravitational Dynamics
1(1)
2.1 In a Nutshell
1(11)
2.1.1 Equations of Motion for a Self-gravitating System
1(1)
2.1.2 Gravitational Time Scales
2(5)
2.1.3 Star Cluster Dynamics
7(3)
2.1.4 Physics of the Integrator
10(2)
2.2 N-body Integration Strategies
12(7)
2.2.1 Global Structure of an N-body Code
13(1)
2.2.2 Types of N-body Code
14(1)
2.2.3 Discretization Strategies in N-body Simulations
15(4)
2.3 Gravity Solvers in AMUSE
19(15)
2.3.1 Generating Initial Conditions
21(2)
2.3.2 Specifying and Initializing the Gravity Solver
23(1)
2.3.3 Setting and Getting Parameters in a Community Code
24(2)
2.3.4 Feeding Particles to the N-body Code
26(1)
2.3.5 Evolving the Model to the Desired Time
27(2)
2.3.6 Retrieving Data from the N-body Code
29(1)
2.3.7 Storing and Recovering Data
29(2)
2.3.8 Using Other Units
31(1)
2.3.9 Interrupting the N-body Integrator
32(2)
2.4 Examples
34(13)
2.4.1 Integrating the Orbits of Venus and Earth
34(5)
2.4.2 Small Cluster with Stellar Collisions
39(2)
2.4.3 Secular Multiples
41(3)
2.4.4 Merging Galaxies
44(3)
2.5 Validation
47(1)
2.5.1 Error Propagation and Validation
47(1)
2.6 Assignments
48(5)
2.6.1 Orbital Trajectories
48(1)
2.6.2 Vostok
49(1)
2.6.3 Dynamical Binary Formation
50(1)
2.6.4 L1 Lagrangian Point
50(2)
2.6.5 Virial Equilibrium
52(1)
References
53
3 Stellar Structure and Evolution
1(1)
3.1 In a Nutshell
1(12)
3.1.1 Stellar Time Scales
4(3)
3.1.2 Physics of the Interior
7(4)
3.1.3 Final Stages of Stellar Evolution
11(2)
3.2 Simulating Stellar Evolution
13(14)
3.2.1 Stellar Evolution Modules in AMUSE
15(1)
3.2.2 Improving the Stellar Evolution Solver
16(2)
3.2.3 Evolving an Inhomogeneous Stellar Population
18(1)
3.2.4 Multiprocessing Codes
19(1)
3.2.5 Enforcing Stellar Mass Loss/Gain
20(2)
3.2.6 Accessing Stellar Interiors
22(1)
3.2.7 Modeling Stellar Mergers
23(1)
3.2.8 Interrupting Stellar Evolution
24(1)
3.2.9 Binary Evolution
25(2)
3.2.10 Reading and Writing Binary Evolution Files
27(1)
3.3 Examples
27(3)
3.3.1 Response of a Star to Mass Loss
27(1)
3.3.2 Blue Stragglers in M67
28(2)
3.4 Validation
30(3)
3.5 Assignments
33(1)
3.5.1 Stellar Comparison
33(1)
3.5.2 Ages of the M67 Blue Stragglers
33(1)
3.5.3 Constructing Isochrones
33(1)
References
34
4 Elementary Coupling Strategies
1(1)
4.1 Multiphysics Problems
1(1)
4.2 Combining Two or More Solvers
2(10)
4.2.1 Combining Gravity with Stellar Evolution
2(1)
4.2.2 Evolution of a Hierarchical Triple System
3(3)
4.2.3 Dedicated Channels and Copy Operations
6(4)
4.2.4 Particle Subsets and Supersets
10(2)
4.3 Analysis Tools
12(2)
4.3.1 The Hop Package
12(1)
4.3.2 The Kepler Package
12(2)
4.4 Multi-code Strategies
14(11)
4.4.1 Basic Collision Handling
15(2)
4.4.2 Using a Separate Code to Manage a Collision
17(2)
4.4.3 Recovering from a Code Crash
19(2)
4.4.4 Event-driven Simulations
21(4)
4.5 The multiples Module
25(2)
4.6 Examples
27(10)
4.6.1 Small Cluster with Disk-destroying Encounters
27(3)
4.6.2 Stellar and Binary Evolution with Stellar Dynamics
30(7)
4.7 Validation
37(1)
4.8 Assignments
37(2)
4.8.1 Interlaced Time-stepping
37(1)
4.8.2 Stellar Evolution and Dynamics
38(1)
4.8.3 Multiple Stellar Populations
38(1)
References
39
5 Hydrodynamics
1(1)
5.1 In a Nutshell
1(11)
5.1.1 Underlying Equations
2(3)
5.1.2 Turbulence and Shocks
5(3)
5.1.3 Hydrodynamical Time Scales
8(1)
5.1.4 Hydrodynamical Instabilities
9(2)
5.1.5 Physics of the Integrator
11(1)
5.2 Hydrodynamics in AMUSE
12(23)
5.2.1 Types of Hydrodynamics Code
13(2)
5.2.2 Smoothed Particle Hydrodynamics
15(2)
5.2.3 Grid-based Methods
17(2)
5.2.4 Managing Shocks and Discontinuities
19(1)
5.2.5 Initializing a Grid from a Particle Distribution
20(2)
5.2.6 Using a Hydro Code to Simulate a Stellar Merger
22(7)
5.2.7 Continuing with Hydrodynamics after a Henyey Code Crash
29(1)
5.2.8 Extending the Hydrodynamics Solver
30(5)
5.3 Examples
35(14)
5.3.1 Collapsing Molecular Cloud
35(8)
5.3.2 Circumstellar Disk with a Bump
43(2)
5.3.3 Colliding Stars
45(2)
5.3.4 Accreting from the Wind of a Companion
47(2)
5.4 Validation
49(4)
5.4.1 Riemann Shock Tube Problem
50(1)
5.4.2 Kelvin--Helmholtz Test
51(1)
5.4.3 Cloud-shock Test
51(2)
5.4.4 Boss--Bodenheimer Test
53(1)
5.5 Assignments
53(9)
5.5.1 Convergence Test
53(1)
5.5.2 Testing the Boss-Bodenheimer Test
54(1)
5.5.3 The Dissolving Bump
55(1)
5.5.4 Collapsing Molecular Cloud with Sink Particles
56(1)
5.5.5 A Star-forming Region
57(1)
5.5.6 Neutron Star Hits Companion
57(1)
5.5.7 Supernova Explosion
58(3)
5.5.8 Hoag's Object
61(1)
References
62
6 Radiative Transfer
1(1)
6.1 In a Nutshell
1(5)
6.1.1 Underlying Equations
3(2)
6.1.2 Physics of the Integrator
5(1)
6.2 Radiative Transfer in AMUSE
6(8)
6.2.1 Radiative Transfer Modules
6(3)
6.2.2 Ionization of a Molecular Cloud
9(4)
6.2.3 Coupling Radiative Transfer with Hydrodynamics
13(1)
6.3 Examples
14(6)
6.3.1 Heating of a Protoplanetary Disk
14(3)
6.3.2 Ionization Front in an H2 Region
17(3)
6.4 Validation
20(3)
6.5 Assignments
23(1)
6.5.1 Habitability of a Protoplanetary Disk
23(1)
6.5.2 Bumpy disks
24(1)
References
24
7 Hierarchical Coupling Strategies
1(1)
7.1 Code-coupling Strategies
1(7)
7.1.1 The Bridge Method
2(3)
7.1.2 Implementation of Bridge
5(1)
7.1.3 Higher-order Bridge
6(2)
7.2 Using Bridge
8(7)
7.2.1 Star Cluster in a Static Galactic Potential
9(3)
7.2.2 The Classic Bridge
12(3)
7.3 Bridging Other Codes
15(10)
7.3.1 Bridge Hierarchies and Hierarchical Bridges
15(5)
7.3.2 Bridging Gravity with Hydrodynamics
20(5)
7.4 Examples
25(15)
7.4.1 Dissolving Star Cluster in the Galactic Potential
25(7)
7.4.2 Did the Sun Originate in M67?
32(2)
7.4.3 Inspiral of a Binary Star into a Common Envelope
34(3)
7.4.4 Budding Planets in a Protoplanetary Disk
37(2)
7.4.5 Planetary Systems in Star Clusters
39(1)
7.5 Assignments
40(7)
7.5.1 Drift with Gravity Code
40(1)
7.5.2 How Did the Sun Escape from M67?
40(2)
7.5.3 Half Tree Code, Half Direct
42(1)
7.5.4 The Accreting Black Hole in HLX-1
43(2)
7.5.5 Forming the Widest Binary Stars
45(2)
References
47
8 Case Studies
1(1)
8.1 Accretion in the Galactic Center from S-star Winds
2(9)
8.1.1 Initial Conditions
2(2)
8.1.2 The Combined Solver
4(5)
8.1.3 Results of the Simulation
9(2)
8.2 Supernova Impact on the Early Solar System
11(8)
8.2.1 Initial Conditions and Model Parameters
12(1)
8.2.2 The Combined Solver
12(1)
8.2.3 Radiative Hydrodynamics with Cooling and Heating
13(2)
8.2.4 Injection of the Supernova Blast Wave
15(1)
8.2.5 The Supernova Blast Wave Hits the Disk
16(3)
8.3 Closure
19(1)
References
19
9 Epilogue
1(1)
Appendices
A AMUSE Fundamentals
1(1)
B AMUSE Specifics
1(1)
C Programming Primer
1