Muutke küpsiste eelistusi

Astrophysical Techniques, Fifth Edition 5th New edition [Kõva köide]

  • Formaat: Hardback, 592 pages, kõrgus x laius: 235x156 mm, kaal: 953 g, 240 Illustrations, black and white
  • Ilmumisaeg: 11-Aug-2008
  • Kirjastus: CRC Press Inc
  • ISBN-10: 1420082434
  • ISBN-13: 9781420082432
Teised raamatud teemal:
  • Kõva köide
  • Hind: 63,99 €*
  • * saadame teile pakkumise kasutatud raamatule, mille hind võib erineda kodulehel olevast hinnast
  • See raamat on trükist otsas, kuid me saadame teile pakkumise kasutatud raamatule.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Lisa soovinimekirja
  • Formaat: Hardback, 592 pages, kõrgus x laius: 235x156 mm, kaal: 953 g, 240 Illustrations, black and white
  • Ilmumisaeg: 11-Aug-2008
  • Kirjastus: CRC Press Inc
  • ISBN-10: 1420082434
  • ISBN-13: 9781420082432
Teised raamatud teemal:
Kitchin (U. of Herfordshire, England) updates his textbook introducing the instruments and techniques used in astronomy and astrophysics to undergraduate science students, and perhaps to amateur astronomers who have no more than a high school level of mathematics. He mentions no dates for earlier editions, but this fifth discusses several new instruments, while keeping topics that, while not relevant to professional astronomers now, may still be used by amateurs and referenced in classical studies. He also adds a brief discussion of the invention of the telescope these four centuries ago, and its subsequent development. Annotation ©2008 Book News, Inc., Portland, OR (booknews.com) Emphasizing the underlying unity of all astronomical observations, Astrophysical Techniques, Fifth Edition provides a coherent state-of-the-art account ofthe instruments and techniques used in current astronomy and astrophysics. The fifth edition of this well-respected text includes many new instruments and techniques while removing some that have long been unused by both professional and amateur astronomers. New to the Fifth Edition Brief discussion on the invention and development of the telescope New section that describes the attempts to detect dark matter and dark energy Extended and updated discussions on computer, Internet, and spacecraft-based observations and research By covering the instruments, techniques, theory, and data processing of astrophysics in sufficient depth, this text forms a thorough grounding for beginners and is a handy reference for more advanced students and professionals.
Preface, xvii
Standard Symbols, xxi
CHAPTER 1 Detectors 1
1.1 OPTICAL AND INFRARED DETECTION
1
1.1.1 Introduction
1
1.1.2 Detector Types
2
1.1.3 Eye
2
1.1.4 Semiconductors
8
1.1.4.1 Photoelectric Effect
11
1.1.5 Detector Index
14
1.1.6 Detector Parameters
15
1.1.7 Cryostats
16
1.1.8 Charge-Coupled Devices
17
1.1.9 Photography
30
1.1.10 Photomultipliers
30
1.1.11 Superconducting Tunnel Junction Detectors
33
1.1.12 Other Types of Detectors
34
1.1.12.1 Photovoltaic Cells
34
1.1.12.2 Thermocouples
38
1.1.12.3 Phototransistors
39
1.1.13 Infrared Detectors
39
1.1.13.1 Photoconductive Cells
40
1.1.13.2 Bolometers
43
1.1.13.3 Other Types of Detectors
45
1.1.14 Ultraviolet Detectors
46
1.1.15 Future Possibilities
47
1.1.16 Noise
47
1.1.16.1 Intrinsic Noise
48
1.1.16.2 Signal Noise
50
1.1.16.3 Digitization
51
1.1.17 Telescopes
51
1.1.17.1 Telescopes from the Beginning
51
1.1.17.2 Optical Theory
61
1.1.18 Telescope Designs
89
1.1.18.1 Background
89
1.1.18.2 Designs
93
1.1.19 Telescopes in Space
107
1.1.20 Mountings
109
1.1.21 Real-Time Atmospheric Compensation
114
1.1.21.1 Sampling System
116
1.1.21.2 Wavefront Sensing
120
1.1.21.3 Wavefront Correction
122
1.1.22 Future Developments
124
1.1.23 Observing Domes, Enclosures, and Sites
127
Exercises
130
1.2 RADIO AND MICROWAVE DETECTION
131
1.2.1 Introduction
131
1.2.2 Detectors and Receivers
133
1.2.3 Radio Telescopes
139
1.2.3.1 Construction
151
Exercises
153
1.3 X-RAY AND γ-RAY DETECTION
153
1.3.1 Introduction
153
1.3.2 Detectors
155
1.3.2.1 Geiger Counters
155
1.3.2.2 Proportional Counters
156
1.3.2.3 Scintillation Detectors
158
1.3.2.4 Gas Scintillation Proportional Counters
159
1.3.2.5 Charge-Coupled Devices
160
1.3.2.6 Superconducting Tunnel Junction Detectors
160
1.3.2.7 Compton Interaction Detectors
161
1.3.2.8 Spark Detectors
161
1.3.2.9 Cerenkov Detectors
161
1.3.2.10 Solid-State Detectors
162
1.3.2.11 Micro-Channel Plates
165
1.3.2.12 Future Possibilities
166
1.3.3 Shielding
167
1.3.4 Imaging
168
1.3.4.1 Collimation
168
1.3.4.2 Coincidence Detectors
172
1.3.4.3 Occultation
172
1.3.4.4 Reflecting Telescopes
172
1.3.5 Resolution and Image Identification
178
1.3.6 Spectroscopy
179
1.3.6.1 Grating Spectrometers
179
1.3.6.2 Bragg Spectrometers
181
1.3.7 Polarimetry
183
1.3.8 Observing Platforms
184
1.4 COSMIC RAY DETECTORS
185
1.4.1 Background
185
1.4.2 Detectors
186
1.4.3 Real-Time Methods
187
1.4.3.1 Spark Detectors
187
1.4.3.2 Scintillation Detectors
188
1.4.3.3 Cerenkov Detectors
188
1.4.3.4 Solid-State Detectors
190
1.4.3.5 Nucleon Detectors
190
1.4.4 Residual Track Detectors
191
1.4.4.1 Photographic Emulsions
191
1.4.4.2 Ionization Damage Detectors
192
1.4.5 Indirect Detectors
193
1.4.5.1 100 MeV γ Rays
193
1.4.5.2 Radio Emission
193
1.4.5.3 Fluorescence
194
1.4.5.4 Solar Cosmic Rays
194
1.4.5.5 Carbon-14
194
1.4.6 Arrays
195
1.4.7 Correction Factors
196
1.4.7.1 Atmospheric Effects
196
1.4.7.2 Solar Effects
197
1.4.7.3 Terrestrial Magnetic Field
198
Exercises
198
1.5 NEUTRINO DETECTORS
200
1.5.1 Background
200
1.5.2 Chlorine-37 Detectors
203
1.5.3 Water-Based Detectors
206
1.5.4 Gallium-Based Detectors
211
1.5.5 Scintillator-Based Detectors
212
1.5.6 Acoustic Detectors
213
1.5.7 Other Types of Detectors
213
1.5.7.1 Direct Interaction Type Detectors
213
1.5.7.2 Geological Detectors
215
Exercises
216
1.6 GRAVITATIONAL RADIATION
217
1.6.1 Introduction
217
1.6.2 Detectors
220
1.6.2.1 Direct Resonant Detectors
220
1.6.2.2 Direct, Nonresonant Detectors
221
1.6.2.3 Indirect Detectors
225
Exercises
226
1.7 DARK MATTER AND DARK ENERGY DETECTION
226
1.7.1 Introduction
226
1.7.2 Dark Matter and Dark Energy Detectors
228
CHAPTER 2 Imaging 233
2.1 INVERSE PROBLEM
233
2.1.1 Deconvolution
234
2.2 PHOTOGRAPHY
240
2.2.1 Introduction
240
2.2.2 Structure of the Photographic Emulsion
242
2.2.3 Photographic Image
246
2.2.4 Processing
253
2.2.5 Hypersensitization
255
2.2.5.1 Heating
255
2.2.5.2 Gas Immersion Effects
255
2.2.6 Techniques of Astronomical Photography
256
2.2.7 Analysis of Photographic Images
258
2.3 ELECTRONIC IMAGING
259
2.3.1 Introduction
259
2.3.2 Television and Related Systems
260
2.3.3 Image Intensifiers
260
2.3.4 Photon Counting Imaging Systems
260
2.4 SCANNING
261
2.5 INTERFEROMETRY
265
2.5.1 Introduction
265
2.5.2 Michelson Optical Stellar Interferometer
266
2.5.3 Michelson Radio Interferometer
279
2.5.4 Reflection Interferometers
285
2.5.5 Aperture Synthesis
285
2.5.6 Intensity Interferometer
294
Exercises
297
2.6 SPECKLE INTERFEROMETRY
298
2.7 OCCULTATIONS
303
2.7.1 Background
303
2.7.2 Techniques
307
2.7.3 Analysis
310
2.8 RADAR
311
2.8.1 Introduction
311
2.8.2 Theoretical Principles
312
2.8.3 Equipment
319
2.8.4 Data Analysis
320
2.8.5 Meteors
323
Exercise
323
2.9 ELECTRONIC IMAGES
324
2.9.1 Image Formats
324
2.9.2 Image Compression
324
2.9.3 Image Processing
326
2.9.3.1 Grey Scaling
326
2.9.3.2 Image Combination
327
2.9.3.3 Spatial Filtering
327
CHAPTER 3 Photometry 329
3.1 PHOTOMETRY
329
3.1.1 Background
329
3.1.1.1 Introduction
329
3.1.1.2 Magnitudes
330
3.1.2 Filter Systems
333
3.1.3 Stellar Parameters
341
Exercises
356
3.2 PHOTOMETERS
357
3.2.1 Instruments
357
3.2.1.1 Introduction
357
3.2.1.2 Photographic Photometry
357
3.2.1.3 CCD and Photoelectric Photometers
359
3.2.2 Observing Techniques
360
3.2.3 Data Reduction and Analysis
362
Exercise
365
CHAPTER 4 Spectroscopy 367
4.1 SPECTROSCOPY
367
4.1.1 Introduction
367
4.1.2 Diffraction Gratings
367
4.1.3 Prisms
381
4.1.4 Interferometers
394
4.1.4.1 Fabry—Perot Interferometer
394
4.1.4.2 Michelson Interferometer
402
4.1.5 Fiber Optics
409
Exercises
411
4.2 SPECTROSCOPES
412
4.2.1 Basic Design Considerations
412
4.2.2 Prism-Based Spectroscopes
421
4.2.3 Grating Spectroscopes
425
4.2.4 Integral Field Spectroscopy
430
4.2.5 Multi-Object Spectroscopy
433
4.2.6 Techniques of Spectroscopy
435
4.2.7 Future Developments
441
Exercises
441
CHAPTER 5 Other Techniques 443
5.1 ASTROMETRY
443
5.1.1 Introduction
443
5.1.2 Background
444
5.1.2.1 Coordinate Systems
444
5.1.2.2 Position Angle and Separation
448
5.1.3 Transit Telescopes
448
5.1.4 Photographic Zenith Tube and the Impersonal Astrolabe
450
5.1.5 Micrometers
452
5.1.6 Astrographs and Other Telescopes
453
5.1.7 Interferometers
454
5.1.8 Space-Based Systems
455
5.1.9 Detectors
457
5.1.10 Measurement and Reduction
458
5.1.11 Sky Surveys and Catalogs
461
Exercises
462
5.2 POLARIMETRY
463
5.2.1 Background
463
5.2.1.1 Stokes' Parameters
463
5.2.2 Optical Components for Polarimetry
467
5.2.2.1 Birefringence
468
5.2.2.2 Polarizers
471
5.2.2.3 Converters
476
5.2.2.4 Depolarizers
480
5.2.3 Polarimeters
481
5.2.3.1 Photographic Polarimeters
482
5.2.3.2 Photoelectric Polarimeters
483
5.2.3.3 CCD and Other Array Detector Polarimeters
486
5.2.4 Spectropolarimetry
487
5.2.5 Data Reduction and Analysis
487
Exercises
489
5.3 SOLAR STUDIES
490
5.3.1 Introduction
490
5.3.2 Solar Telescopes
491
5.3.3 Spectrohelioscope
497
5.3.4 Narrowband Filters
499
5.3.5 Coronagraph
506
5.3.6 Pyrheliometer
509
5.3.7 Solar Oscillations
510
5.3.8 Other Solar Observing Methods
510
Exercise
512
5.4 MAG N ETOM ET RY
512
5.4.1 Background
512
5.4.1.1 Zeeman Effect
512
5.4.2 Magnetometers
520
5.4.3 Data Reduction and Analysis
525
5.5 COMPUTERS AND THE INTERNET
526
5.5.1 Introduction
526
5.5.2 Digital Sky Surveys
527
5.5.3 Virtual Observatories
528
Appendix A: Julian Date 531
Appendix B: Answers to the Exercises 533
Appendix C: Acronyms 535
Appendix D: Bibliography 543
Index 549
University of Hertfordshire Observatory, UK