Muutke küpsiste eelistusi

Asymptotic Estimates and Entire Functions [Pehme köide]

  • Formaat: Paperback / softback, 192 pages, kõrgus x laius x paksus: 216x140x11 mm, kaal: 240 g
  • Ilmumisaeg: 31-May-2020
  • Kirjastus: Dover Publications Inc.
  • ISBN-10: 0486842355
  • ISBN-13: 9780486842356
Teised raamatud teemal:
  • Pehme köide
  • Hind: 26,34 €*
  • * saadame teile pakkumise kasutatud raamatule, mille hind võib erineda kodulehel olevast hinnast
  • See raamat on trükist otsas, kuid me saadame teile pakkumise kasutatud raamatule.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 192 pages, kõrgus x laius x paksus: 216x140x11 mm, kaal: 240 g
  • Ilmumisaeg: 31-May-2020
  • Kirjastus: Dover Publications Inc.
  • ISBN-10: 0486842355
  • ISBN-13: 9780486842356
Teised raamatud teemal:
This three-chapter treatment introduces principal methods, discusses the theory of entire functions of finite order, and applies the first chapter's methods to the functions of the second chapter. 1961 edition.


Asymptotic estimates are of key significance to mathematical analysis and its applications, assisting investigators whose calculations become too complicated or impossible. This monograph, a major contribution to the literature upon its original publication, retains its value by working out specific examples that illustrate general methods with clarity and precision.
The three-chapter treatment introduces principal methods of obtaining asymptotic estimates, discusses basic material from the theory of entire functions of finite order, and applies the first chapter's methods to the functions of the second chapter. M. A. Evgrafov presents the basic material of the theory of entire functions in the closest possible connection with asymptotic estimates in order to obtain material for examples and to enable readers to efficiently master the theory.
For advanced undergraduates and graduate students in mathematics
Translator's Preface vii
Introduction ix
Chapter I Methods of obtaining asymptotic estimates
§1 The simplest examples of asymptotic estimates and the concept of an asymptotic series
1(8)
§2 The Euler-Maclaurin summation formula
9(8)
§3 The Laplace method for asymptotic estimation of integrals
17(11)
§4 The method of generating functions
28(14)
§5 The saddlepoint method
42(9)
Chapter II Basic material from the theory of entire functions
§1 The concept of the order of growth
51(6)
§2 The connection between the rate of growth of an entire function and the rate of decrease of its coefficients
57(12)
§3 The connection between the rate of growth of an entire function and the number of zeros
69(13)
§4 Entire functions with regularly distributed zeros
82(12)
§5 The Phragmen-Lindelof principle and the growth of an entire function in different directions
94(11)
§6 The connection between the indicator function and the distribution of zeros
105(14)
§7 The Borel transform
119(8)
Chapter III Special cases of asymptotic estimates
§1 Estimates of entire functions of the form on F(z) = &info;υ∞ μ(t) etz dt, F(z) = &info;∞∞ μ(t) et zdt
127(10)
§2 The Poisson summation formula and estimates of functions of the form F(z) = Σ∞ n=0 μ(n)zn
137(15)
§3 Functions of the form F(z) = Π&info; n = 1 (1 + z/μ(n)) F(z) = Σ ∞ n = 1 φ(n/z+μ(n))
152(16)
§4 Asymptotic estimates of the zeros of entire functions
168(11)
Bibliography 179(2)
Index 181