Muutke küpsiste eelistusi

Audio Power Amplifier Design 6th edition [Pehme köide]

  • Formaat: Paperback / softback, 718 pages, kõrgus x laius: 235x191 mm, kaal: 1315 g, 80 Tables, black and white; 635 Illustrations, black and white
  • Ilmumisaeg: 18-Jun-2013
  • Kirjastus: Focal Press
  • ISBN-10: 0240526139
  • ISBN-13: 9780240526133
  • Formaat: Paperback / softback, 718 pages, kõrgus x laius: 235x191 mm, kaal: 1315 g, 80 Tables, black and white; 635 Illustrations, black and white
  • Ilmumisaeg: 18-Jun-2013
  • Kirjastus: Focal Press
  • ISBN-10: 0240526139
  • ISBN-13: 9780240526133

This book is the essential reference for audio power amplifier designers and engineers. Author Douglas Self covers all the issues of distortion and linearity, power supplies, protection, reliability and layout. He also tackles unusual forms of compensation and unexpected sources of distortion such as capacitors and fuses. This much expanded and updated Fifth Edition includes four NEW chapters, one of them dedicated to the XD crossover-displacement principle, invented by the author, and used by Cambridge Audio. The book has a wealth of new material on four-stage amplifier architectures, current-mirrors, power transistors with internal sensing diodes, amplifier bridging, subtle distortion mechanisms, input stage common-mode distortion, double input stages, amplifier stability, output stages with gain, transformers and hum fields, inrush current suppression, DC servo design, thermal protection, the subtleties of cooling fan control, advanced line input stages, ultra-low-noise design, high and low-pass filtering, testing and safety, infra-red control, signal activation, 12V trigger, level indication and much more. There is significantly expanded material on professional power amplifiers as used in sound reinforcement and PA applications. This book is a must-have for audio power amplifier professionals and audiophiles, amateur constructors and anyone with intellectual curiosity about the struggle towards technical excellence.

*Provides everything you want to know in one volume, offering an essential guide to design principals and practice *Includes numerous graphs and an easy to read layout to illustrate points and aid complete understanding. *Includes the author's own amplifier designs for readers to build upon and adapt



This is the essential book reference for amplifier designers. Douglas Self covers all the design issues of noise, distortion, power supply rejection, protection, reliability, and layout. He describes advanced forms of compensation that give dramatically lower distortion.

This edition is much expanded, and packed with new information. It is a must-have for audio power amplifier professionals and audiophiles, amateur constructors and anyone with intellectual curiosity about the struggle towards technical excellence.

New to the sixth edition:

  • The characteristics of the audio signal
  • The principles of distortion
  • Feedback intermodulation distortion
  • Non-switching output stages
  • VAS distortion explained
  • Push-pull VAS configurations
  • Output-inclusive compensation

In addition, five amplifier design examples that illustrate important design principles are examined and measured in detail. These can be straightforwardly adapted to specific requirements.

This new edition also includes a wealth of material on the XD crossover-displacement principle (invented by the author and in use by Cambridge Audio), four-stage amplifier architectures, error correction, current-mirrors, power transistors with internal sensing diodes, amplifier bridging, input-stage-common-mode distortion, amplifier stability, output stages with gain, inrush current suppression, DC servo design, thermal protection, cooling fan control, advanced line input stages, testing and safety, infrared remote control, signal activation, 12V trigger control, the history of solid-state amplifiers and much more. Simple procedures for heatsinking and power supply design are given.

Preface to the Sixth Edition xxvii
Acknowledgements xxxi
List of Abbreviations xxxiii
Chapter 1 Amplifiers and The Audio Signal 1(24)
The Economic Importance of Power Amplifiers
2(1)
Assumptions
2(1)
Origins and Aims
2(1)
The Study of Amplifier Design
3(1)
The Characteristics of the Audio Signal
4(1)
Amplitude Distribution with Time
4(1)
Amplitude Distribution with Frequency
5(1)
The Performance Requirements for Amplifiers
5(7)
Safety
5(1)
Reliability
5(1)
Power Output
6(1)
Frequency Response
7(1)
Noise
7(1)
Distortion
7(3)
"Damping Factor"
10(1)
Absolute Phase
11(1)
Amplifier Formats
12(1)
Misinformation in Audio
12(1)
Science and Subjectivism
13(4)
The Subjectivist Position
13(1)
A Short History of Subjectivism
14(1)
The Limits of Hearing
14(2)
The Limits of Hearing: Phase Perception
16(1)
Articles of Faith: The Tenets of Subjectivism
17(6)
The Length of the Audio Chain
21(1)
The Implications
21(1)
The Reasons Why
21(1)
The Outlook
22(1)
Technical Errors
22(1)
References
23(2)
Chapter 2 The Basics of Distortion 25(28)
Models of Non-linearity
26(1)
Cubic Distortion
27(1)
Cubic + Linear Distortion
27(1)
Square Law Distortion
28(3)
Square Root Distortion
31(1)
Soft-clipping Distortion
31(4)
Hard-clipping Distortion: Symmetrical
35(1)
Hard-clipping Distortion: Asymmetrical
36(1)
Crossover Distortion Modelling
37(1)
Other Distortion Models
37(1)
Choosing a Distortion Model
38(1)
SPICE Models for Passive Components
38(1)
First-order Voltage-coefficient Distortion Model
39(4)
Second-order Voltage-coefficient Distortion Model
43(1)
Other Voltage Coefficient Distortion Models
44(1)
Measuring Resistor Distortion
45(5)
Metal Film, Metal Foil, and Wirewound Resistors
45(1)
Metal Oxide Resistors
45(1)
Carbon Film Resistors
45(3)
Carbon Film Resistor Usage
48(1)
Carbon Composition Resistors
48(2)
Resistors in the Feedback Network
50(1)
Modelling Distortion from other Passive Components
50(1)
References
51(2)
Chapter 3 Negative Feedback 53(20)
Negative Feedback in Amplifiers
54(2)
Common Misconceptions about Negative Feedback
56(1)
Negative Feedback and Amplifier Stability
57(7)
Feedback Intermodulation Distortion
64(4)
Maximising the Amount of Negative Feedback
68(1)
Overall Feedback Versus Local Feedback
69(2)
Maximising Linearity before Feedback
71(1)
Positive Feedback in Amplifiers
71(1)
References
71(2)
Chapter 4 Amplifier Architecture, Classes, and Variations 73(40)
Amplifier Architectures
75(1)
The Three-stage Amplifier Architecture
75(1)
The Two-stage Amplifier Architecture
76(1)
The Four-stage Amplifier Architecture
76(3)
The Five-stage Amplifier Architecture
79(1)
Power Amplifier Operating Classes
79(1)
Combinations of Amplifier Classes
80(6)
Class-A
80(1)
Class-AB
81(1)
Class-B
82(1)
Class-C
82(1)
Class-D
82(1)
Class-E
82(1)
Class-F
82(1)
Class-G
82(2)
Class-H
84(1)
Class-S
85(1)
Class XD
85(1)
Edwin Amplifiers
85(1)
The Limits of Classification
85(1)
Amplifier Variations
86(16)
Error-correcting Amplifiers
86(4)
Auxiliary Amplifiers
90(1)
Non-switching Amplifiers
91(9)
The Blomley Principle
100(1)
Ribbon Loudspeaker Amplifiers
101(1)
Power Amplifiers Combined with Tone-controls
101(1)
Opamp Array Amplifiers
101(1)
Current-drive Amplifiers
102(1)
Amplifier Bridging
102(4)
Fractional Bridging
103(2)
Eliminating the Bridging Inverter
105(1)
Increasing Bridging Reliability
106(1)
AC- and DC-coupled Amplifiers
106(3)
The Advantages of AC-coupling f
106(1)
The Advantages of DC-coupling
107(2)
References
109(2)
Further reading
111(2)
Chapter 5 General Principles and Distortion Mechanisms 113(12)
Gain and Feedback in the Three-stage Amplifier
114(2)
The Advantages of the Conventional
116(1)
The Distortion Mechanisms
117(2)
Distortion One: Input Stage Distortion
117(1)
Distortion Two: VAS Distortion
117(1)
Distortion Three: Output Stage Distortion
117(1)
Distortion Four: VAS Loading Distortion
118(1)
Distortion Five: Rail Decoupling Distortion
118(1)
Distortion Six: Induction Distortion
118(1)
Distortion Seven: NFB Takeoff Distortion
118(1)
Distortion Eight: Capacitor Distortion
119(1)
Distortion Nine: Magnetic Distortion
119(1)
Distortion Ten: Input Current Distortion
119(1)
Distortion Eleven: Premature Overload Protection Distortion
119(1)
Non-existent or Negligible Distortions
119(1)
The Performance of a Standard Amplifier
120(1)
Open-loop Linearity and How to Determine It
121(1)
Direct Open-loop Gain Measurement
121(1)
Using Model Amplifiers
122(1)
The Concept of the Blameless Amplifier
122(1)
References
123(2)
Chapter 6 The Input Stage 125(36)
The Role of the Input Stage
126(1)
Distortion from the Input Stage
126(1)
BJTs vs FETs for the Input Stage
127(1)
Advantages of the FET Input Stage
128(1)
Disadvantages of the FET Input Stage
128(1)
Singleton Input Stage Versus Differential Pair
128(1)
The Input Stage Distortion in Isolation
128(1)
Input Stage Balance
129(3)
The Joy of Current-mirrors
132(1)
Better Current-mirrors
133(1)
Improving Input Stage Linearity
134(1)
Further Improving Input-Stage Linearity
135(3)
Increasing the Output Capability
138(1)
Input Stage Cascode Configurations :
138(2)
Double Input Stages
140(1)
Input Stage Common-mode Distortion
140(2)
Input Current Distortion
142(8)
Noise
150(7)
Noise Sources in Power Amplifiers
150(3)
Noise in Bipolar Transistors
153(3)
Reducing Input Transistor Noise
156(1)
Offset and Match: The DC Precision Issue
157(1)
The Input Stage and the Slew-rate
157(1)
Input Stage Conclusions
157(1)
References
158(3)
Chapter 7 The Voltage Amplifier Stage 161(40)
The Voltage-Amplifier Stage (VAS)
162(1)
The Naming of Parts
162(1)
The Basic Single-ended VAS
162(1)
Bootstrapping the VAS
163(2)
The Current-source VAS
165(1)
VAS Operation and Open-loop Gain
165(2)
The Simple VAS in a Model Amplifier
167(2)
The Mechanisms of VAS Distortion
169(11)
HF Distortion from the VAS Transistor Cbc
171(1)
Changing the Amplifier Operating Point
171(1)
Changing the Supply Rails
172(1)
The Dual VAS
172(1)
VAS Distortion from Clamp Diodes
173(1)
The History of Non-linear Cbc Distortion
173(1)
LF Distortion Due to VAS Transistor Early Effect
174(1)
Early Effect in the Simple VAS
175(2)
The Simulation of Simple VAS Early Effect Distortion
177(3)
Methods for The Reduction of VAS Distortion
180(1)
The Emitter-follower VAS
180(5)
How the EF-VAS Works
181(2)
A Brief History of the EF-VAS
183(1)
Clamp Diodes and the EF-VAS
184(1)
The Benefits of the EF-VAS
184(1)
The Cascode VAS
185(4)
How the Cascode VAS Works
187(1)
A Brief History of the Cascode VAS a
188(1)
The Benefits of the Cascode VAS
188(1)
The VAS Buffer
189(2)
VAS Distortion Due to Output Stage Loading
191(3)
Some More VAS Variations
194(1)
VAS Operating Conditions
195(1)
VAS Current Limiting
196(1)
The Class-AB VAS and Further Developments
197(1)
Manipulating Open-loop Bandwidth
197(2)
Conclusions
199(1)
References
200(1)
Chapter 8 The Push pull Voltage-Amplifier Stage 201(30)
The Push-pull VAS
202(1)
Single Input Stages with a Push-pull VAS
202(1)
The Hitachi Push-pull VAS
202(3)
The Hitachi Push-pull VAS: Heating and Drift
205(1)
The Hitachi Circuit: AC Gain
205(1)
The Hitachi push-pull VAS: distortion
206(1)
The Hitachi Push-pull VAS: Asymmetrical Clipping
207(1)
The Lender Push-pull VAS
207(2)
The Lender Push-pull VAS: Heating and Drift
209(1)
Single Input Stages with a One-input Push-pull VAS
210(3)
The Series Input Stage Push-pull VAS
213(2)
Single-input Push-pull VAS Circuits: Conclusions
215(1)
The Double Input Stage Push-pull Simple VAS
216(1)
The Double Input Stage Push-pull Simple VAS: Open-loop Gain
217(2)
The Double Input Stage Push-pull Simple VAS: Distortion
219(2)
The Double Input Stage Push-pull Simple VAS: Noise
221(1)
The Double Input Stage Push-pull Simple VAS: PSRR
221(1)
A Brief History of the Double Input Stage Push-pull VAS
221(1)
The Double Input Stage Push-pull EF-VAS
222(1)
The Double Input Stage Push-pull EF-VAS: Open-loop Gain
223(1)
The Double Input Stage Push-pull EF-VAS: Distortion
223(1)
The Double Input Stage Push-pull EF-VAS: Slew-rate
224(1)
The Double Input Stage with Mirrors and Push-pull Simple VAS
224(2)
The Double Input Stage Push-pull VAS: Conclusions
226(1)
A More Advanced Push-pull VAS
227(1)
The Folded-cascode VAS
227(1)
The Push-pull VAS: Final Conclusions
228(1)
References
229(2)
Chapter 9 The Output Stage 231(24)
Classes and Devices
232(2)
The Distortions of the Output
234(1)
Harmonic Generation by Crossover Distortion
234(1)
Comparing Output Stages
235(1)
The Emitter-follower Output
235(2)
Multiple Output Devices: EF Output
237(1)
The CFP Output
237(4)
Multiple Output Devices: CFP Output
239(2)
Output Stages with Gain
241(2)
Quasi-complementary Outputs
243(2)
Triple-based Output Configurations
245(5)
Triple EF Output Stages
249(1)
Quadruple Output Stages
250(1)
Series Output Stages
251(2)
Selecting an Output Stage
253(1)
Output Stage Conclusions
253(1)
References
254(1)
Chapter 10 Output Stage Distortions 255(32)
Output Stage Distortions and their Mechanisms
256(1)
Large-signal Distortion (Distortion 3a)
256(13)
The Load-Invariant Concept
259(1)
The LSN Mechanism
259(1)
LSN with Doubled Output Devices
260(1)
LSN with Better Output Devices
260(2)
LSN with Feedforward Diodes
262(1)
LSN with Triple Output Stages
262(1)
Loads below 4Ω
263(1)
Better 8Ω Performance
264(1)
A Practical Load-Invariant Design
264(2)
More on Multiple Output Devices
266(3)
Load Invariance: Summary
269(1)
Crossover Distortion (Distortion 3b)
269(11)
Output Stage Quiescent Conditions
275(2)
An Experiment on Crossover Distortion
277(2)
Vq as the Critical Quiescent Parameter
279(1)
Switching Distortion (Distortion 3c)
280(1)
Thermal Distortion
281(1)
Thermal Distortion in a Power Amp IC
282(1)
Closing the Loop: Distortion in Complete Amplifiers
283(3)
Reference
286(1)
Chapter 11 More Distortion Mechanisms 287(22)
Distortion Four: VAS Loading Distortion
288(1)
Distortion Five: Rail Decoupling Distortion
288(2)
Distortion Six: Induction Distortion
290(5)
Distortion Seven: NFB Takeoff Point Distortion
295(2)
Distortion Eight: Capacitor Distortion
297(3)
Distortion Nine: Magnetic Distortion
300(2)
Distortion Ten: Input Current Distortion
302(1)
Distortion Eleven: Premature Overload Protection
302(1)
Design Example: a 50 W Class-B Amplifier
302(6)
References
308(1)
Chapter 12 Closely Observed Amplifiers: Design Examples 309(18)
Amplifier Design Examples
310(1)
Amplifier 1: EF-VAS, CFP Output Stage, Miller Compensation
310(6)
Amplifier 2: Simple VAS, CFP Output Stage, Miller Compensation
316(3)
Amplifier 3: EF-VAS, CFP Output Stage, Inclusive Compensation
319(4)
Amplifier 4: EF-VAS, CFP Output Stage, Miller Compensation
323(1)
Amplifier 5: EF-VAS, CFP Output Stage, Inclusive Compensation
323(3)
Conclusions
326(1)
References
326(1)
Chapter 13 Compensation and Stability 327(28)
Compensation and Stability
328(1)
Dominant Pole Compensation
329(1)
Maximal Negative Feedback
329(2)
Dominant Pole Miller Compensation
331(1)
Dominant Pole Miller Compensation at High Gains
331(2)
Dominant Pole Shunt Compensation
333(1)
Output-inclusive Compensation
334(7)
The Problems of Output Inclusion
334(1)
Input-inclusive Compensation
334(2)
Stable Output-inclusive Compensation: The History
336(1)
Stable Output-inclusive Compensation: Implementation
336(4)
Experimenting with Output-inclusive Compensation
340(1)
Ultra-low Distortion Performance Comparisons
341(1)
Two-pole Compensation
341(8)
Factors Affecting the Two-pole Loop-gain Response
343(2)
Effect of Two-pole Compensation on the Closed-loop Gain
345(2)
Eliminating the Two-pole Midband Loop-gain Peak
347(1)
Two-pole Compensation and PSRR
348(1)
Two-pole Compensation: Summary
348(1)
Combining Two-pole and Output-inclusive Compensation
348(1)
Other Forms of Compensation
349(1)
Stability and VAS-collector-to-ground Capacitance
349(1)
Nested Feedback Loops
349(2)
Nested Differentiating Feedback Loops
351(2)
References
353(2)
Chapter 14 Output Networks and Load Effects 355(32)
Output Networks
356(1)
Amplifier Output Impedance
356(1)
Minimising Amplifier Output Impedance
357(1)
Zobel Networks
358(1)
Output Inductors
358(6)
Designing the Output Inductor: Single-layer Coils
364(2)
Designing the Output Inductor: Multi-layer Coils
366(1)
Crosstalk in Amplifier Output Inductors
367(3)
Coil Crosstalk Conclusions
369(1)
Coil Placement Issues
370(1)
Cable Impedance Effects
370(1)
Reactive Loads and Speaker Simulation
371(4)
Resistive Loads
373(1)
Modelling Real Loudspeaker Loading
373(2)
Loudspeaker Loads and Output Stages
375(5)
Single-speaker Load
377(3)
Two-way Speaker Loads
380(1)
Enhanced Loudspeaker Currents
380(3)
Amplifier Stability x
383(2)
HF Instability
384(1)
LFInstability
384(1)
References
385(2)
Chapter 15 Speed and Slew-rate 387(10)
Speed and Slew-rate in Audio Amplifiers
388(1)
The Basics of Amplifier Slew-limiting
388(2)
Slew-rate Measurement Techniques
390(1)
Improving the Slew-rate
391(1)
Simulating Slew-limiting
391(1)
Slewing Limitations in Real Life
392(1)
Some Additional Complications
393(2)
On Asymmetrical Slew-rates
395(1)
Further Improvements and other Configurations
395(1)
References
395(2)
Chapter 16 Power Dissipation in Amplifiers 397(26)
Output Stage Conditions
398(1)
The Mathematical Approach
398(1)
Dissipation by Simulation
398(1)
Power Partition Diagrams
398(10)
Class-B: CFP and EF Power Partition
399(1)
Class-AB Power Partition
399(2)
Class-A Power Partition
401(1)
Class XD Power Partition: Constant-current and Push-pull
401(2)
Class-G Power Partition
403(1)
Class-B EF with Reactive Loads
404(2)
Conclusions on Reactive Loads
406(2)
The Peak-to-Mean Ratio of Music
408(2)
The Probability Density Function (PDF)
410(1)
The Cumulative Distribution Function (CDF)
410(1)
Measuring the PDF
410(2)
Deriving the Actual Power Dissipation
412(1)
Actual Power Dissipation for Class-B CFP
412(1)
Actual Power Dissipation for Class-AB
413(1)
Actual Power Dissipation for Class-A Push-pull
413(1)
Actual Power Dissipation for Class-G
414(1)
Actual Power Dissipation with Reactive Loads
414(1)
Dissipation Summary
415(1)
A Power Amplifier Design Procedure
416(4)
Design Procedure Results
420(1)
References
421(2)
Chapter 17 Class-A Power Amplifiers 423(26)
An Introduction to Class-A
424(1)
Class-A Configurations and Efficiency
424(2)
Output Stages in Class-A
426(3)
Quiescent Current Control Systems
429(1)
A Novel Quiescent Current Controller
430(2)
A Class-A Design
432(1)
The Trimodal Amplifier
432(2)
Load Impedance and Operating Mode
434(1)
Efficiency
435(3)
On Trimodal Biasing
438(1)
Class-A/AB Mode
438(2)
Class-B Mode
440(3)
The Mode-switching System
443(1)
Thermal Design
443(1)
A Complete Trimodal Amplifier Circuit
444(1)
The Power Supply
445(1)
The Performance
445(2)
Further Possibilities
447(1)
References
447(2)
Chapter 18 Class XD: Crossover Displacement 449(14)
The Crossover Displacement Principle
451(2)
Crossover Displacement Realisation
453(2)
Circuit Techniques for Crossover Displacement
455(2)
A Complete Crossover Displacement Power Amplifier Circuit
457(1)
The Measured Performance
457(2)
The Effect of Loading Changes
459(2)
The Efficiency of Crossover Displacement
461(1)
Other Methods of Push-pull Displacement Control
462(1)
Summary: Advantages and Disadvantages
462(1)
References
462(1)
Chapter 19 Class-G Power Amplifiers 463(22)
The Principles of Class-G
464(1)
Introducing Series Class-G
464(1)
Efficiency of Class-G
465(1)
Practicalities
466(2)
The Biasing Requirements
468(1)
The Linearity Issues of Series Class-G
469(1)
The Static Linearity
469(1)
Practical Class-G Design
470(1)
Controlling Small-Signal Distortion
471(3)
The Performance
474(1)
Deriving a New Kind of Amplifier: Class-A + C
474(4)
Class-G with Two-pole Compensation
478(3)
Class-G with Output-inclusive Compensation
481(1)
Class-G Mode Indication
481(2)
Further Variations on Class-G
483(1)
References
483(2)
Chapter 20 Class-D Power Amplifiers 485(10)
A Bit of History
486(1)
Basic Principles
487(1)
Class-D Technology
488(1)
Output Filters
489(1)
Negative Feedback in Class-D
490(1)
Protection
491(1)
Efficiency
491(1)
Alternative Modulation Systems
492(1)
Class-D Examples
492(1)
Further Development
493(1)
References
493(2)
Chapter 21 FET Output Stages 495(10)
The Characteristics of Power FETS
496(1)
FET versus BJT Output Stages
496(1)
Advantages of FETs
496(1)
Disadvantages of FETs
496(1)
IGBTs
497(1)
Power FET Output Stages
497(3)
Power FETs and Bipolars: the Linearity Competition
500(1)
FETs in Class-A Stages
501(2)
References
503(2)
Chapter 22 Thermal Compensation and Thermal Dynamics 505(38)
Why Quiescent Conditions are Critical
506(1)
Accuracy Required of Thermal Compensation
506(3)
Basic Thermal Compensation
509(1)
Assessing the Bias Errors
510(1)
Thermal Simulation
510(1)
Modelling the EF Output Stage
511(7)
Modelling the CFP Output Stage
518(1)
The Integrated Absolute Error Criterion
518(2)
Improved Thermal Compensation: the Emitter-follower Stage
520(2)
Improved Compensation for the CFP Output Stage
522(1)
A Better Sensor Position
522(1)
A Junction-temperature Estimator
523(2)
A Junction Estimator with Dynamics
525(2)
Conclusions about the Simulations
527(1)
Power Transistors with Integral Temperature Sensors
527(3)
Variable-tempco Bias Generators
530(5)
Creating a Higher Tempco
531(1)
Ambient Temperature Changes
531(1)
Creating a Lower Tempco
532(1)
Current Compensation
532(1)
Early Effect in Output Stages
533(2)
Thermal Dynamics by Experiment
535(3)
Crossover Distortion Against Time: Some Results
536(2)
More Measurements: Conventional and ThermalTrak
538(4)
References
542(1)
Chapter 23 The Design of DC Servos 543(10)
DC Offset Trimming
544(1)
DC Offset Control by Servo-loop
545(1)
Advantages of DC Servos
545(1)
Basic Servo Configurations
545(2)
Noise, Component Values, and the Roll-off
547(1)
Non-inverting Integrators
547(2)
The 2C Integrator
548(1)
The 1C Integrator
548(1)
Choice of Integrator
549(2)
Choice of Opamps
551(1)
Servo Authority
551(1)
Design of LF Roll-off Point
551(1)
Servo Overload
552(1)
Servo Testing
552(1)
Performance Issues
552(1)
Multipole Servos
552(1)
Chapter 24 Amplifier and Loudspeaker Protection 553(40)
Categories of Amplifier Protection
555(1)
Semiconductor Failure Modes
555(1)
Overload Protection
556(12)
Overload Protection by Fuses
557(1)
Electronic Overload Protection
557(1)
Plotting the Protection Locus
558(1)
Simple Current-limiting
559(2)
Single-slope VI Limiting
561(1)
Dual-slope VI limiting
562(2)
Time-dependent VI Limiting
564(1)
Alternative VI-limiter Implementations
565(1)
VI Limiting and Temperature Effects
565(1)
Simulating Overload Protection Systems
566(1)
Testing the Overload Protection
567(1)
Speaker Short-circuit Detection
568(1)
Catching Diodes
568(1)
DC-offset Protection
568(13)
DC-offset Protection by Fuses
569(1)
Relay DC-offset Protection and Muting Control
570(1)
Filtering for DC Protection
571(1)
The Single RC Filter
571(1)
The Dual RC Filter
571(1)
The Second-order Active Filter
571(2)
Bidirectional DC Detection
573(3)
Output Relay Selection
576(1)
Distortion from Output Relays
577(3)
Output Crowbar DC Protection
580(1)
Protection by Power-supply Shutdown
581(1)
Testing DC-offset protection
581(1)
Thermal Protection
581(4)
Output Transient Suppression
585(4)
Clip Detection
589(1)
Clip Detection by Rail-approach Sensing
589(1)
Clip Detection by Input-output Comparison
589(1)
Amplifier Protection Patents
590(1)
Powering Auxiliary Circuitry
590(1)
References
591(2)
Chapter 25 Layout, Grounding, and Cooling 593(26)
Audio Amplifier PCB Design
594(8)
Crosstalk
594(1)
Rail Induction Distortion
594(1)
The Mounting of Output Devices
595(1)
Single and Double-sided PCBs
595(1)
PCB Track Resistance and How to Reduce it
596(2)
Cable Resistance
598(1)
Power Supply PCB Layout
599(1)
Power Amplifier PCB Layout Details
599(2)
The Audio PCB Layout Sequence
601(1)
Amplifier Grounding
602(1)
Ground Loops: How they Work and How to Deal with them
602(5)
Hum Injection by Mains Grounding Currents
603(1)
Hum Injection by Transformer Stray Magnetic Fields
604(1)
Hum Injection by Transformer Stray Capacitance
604(1)
Ground Currents Inside Equipment
605(1)
Balanced Mains Power
605(2)
Class I and Class II
607(1)
Warning
607(1)
Cooling
608(6)
Convection Cooling
608(2)
Fan Cooling
610(4)
Heat Pipes
614(1)
Mechanical Layout and Design Considerations
614(3)
Wiring Layout
614(1)
Semiconductor Installation
615(2)
Reference
617(2)
Chapter 26 Power Supplies and PSRR 619(28)
Power Supply Technologies
620(2)
Simple Unregulated Power Supplies
620(1)
Linear Regulated Power Supplies
620(1)
Switch-mode Power Supplies
621(1)
A Devious Alternative to Regulated Power Supplies
622(1)
Design Considerations for Power Supplies
623(12)
Mains Connectors
623(1)
Mains Transformers
624(5)
Transformers and Hum
629(1)
External Power Supplies
630(1)
Inrush Currents
631(2)
Fusing
633(1)
Rectification
634(1)
RF Emissions from Bridge Rectifiers
634(1)
Relay Supplies
634(1)
Power Supply-rail Rejection in Amplifiers
635(11)
A Design Philosophy for Supply-rail Rejection
637(1)
Positive Supply-rail Rejection
637(2)
Negative Supply-rail Rejection
639(7)
References
646(1)
Chapter 27 Power Amplifier Input Systems 647(26)
External Signal Levels
648(1)
Internal Signal Levels
649(1)
Unbalanced Inputs
649(2)
Balanced Interconnections
651(2)
Balanced Connectors
652(1)
Balanced Inputs: Electronic vs Transformer
653(1)
Balanced Inputs and their Common-Mode Rejection Ratio
653(1)
The Basic Balanced Input
654(1)
Practical Common-Mode Rejection
655(1)
The Practical Balanced Input
656(2)
Combined Unbalanced and Balanced Inputs
658(1)
Variable-gain Balanced Inputs
659(1)
The Instrumentation Amplifier
660(3)
Transformer Balanced Inputs
663(1)
Input Overvoltage Protection
664(1)
Noise and the Input System
664(3)
Low-noise Balanced Inputs
667(3)
The Choice of Opamps
670(1)
Using an Internal Balanced Power Amplifier Interface
670(2)
References
672(1)
Chapter 28 Input Processing and Auxiliary Systems 673(12)
Ground Lift Switches
674(1)
Phase Reversal Facility
674(1)
Gain Control
674(1)
Subsonic Filtering: High-pass
674(2)
Ultrasonic Filtering: Low-pass
676(1)
Combined Filters
677(1)
Electronic Crossovers
677(1)
Digital Signal Processing
677(1)
Signal-present Indication
678(1)
Output Level Indication
678(1)
Signal Activation
679(3)
12 V Trigger Activation
682(1)
Infra-red Remote Control
682(1)
Other Amplifier Facilities
683(1)
References
683(2)
Chapter 29 Testing and Safety 685(10)
Simulating Amplifiers
686(1)
Prototyping Amplifiers
686(1)
Testing and Fault-finding
686(2)
Powering up for the First Time
688(1)
Power Supplies for Testing
688(1)
Safety when Working on Equipment
689(1)
Warning
689(1)
Safety Regulations
690(1)
Electrical Safety
690(2)
Shocks from the Mains Plug
692(1)
Touch Current
692(1)
Case Openings
692(1)
Equipment Temperature and Safety
692(2)
Touching Hot Parts
694(1)
Instruction Manuals
694(1)
Chapter 30 A Brief History of Solid-state Power Amplifiers 695(12)
First Beginnings: 1953
696(1)
Transformer-coupled Transistor Power Amplifiers: 1960's
696(2)
The Lin 6 W Amplifier: 1956
698(3)
The Tobey & Dinsdale Amplifier: 1961
701(1)
The Bailey 30 W Amplifier: 1968
702(1)
Hardcastle & Lane 15 W Amplifier: 1969
703(1)
The History of VAS Improvements
703(1)
The History of other Technical Features
704(1)
Transistors and FETs
704(1)
Dead Ends of Amplifier Technology 1: Ultrasonic Biasing
704(1)
Dead Ends of Amplifier Technology 2: Sliding-bias Amplifiers
704(1)
References
705(2)
Index 707(10)
The Signal Transfer Company 717
Douglas Self has established straightforward but highly effective amplifier design techniques based on sound engineering principles and experimental data. His rigorous and thoroughly practical approach has established him as a leading authority on audio amplifier design.



Douglas studied engineering at Cambridge University, then psychoacoustics at Sussex University. He has spent many years working at the top level of design in both the professional audio and hifi industries, and has taken out a number of patents in the field of audio technology. He currently acts as a consultant engineer in the field of audio design.