Muutke küpsiste eelistusi

Australian Guidebook for Structural Engineers: A guide to structural engineering on a multidiscipline project [Kõva köide]

(Coffey Services Australia)
  • Formaat: Hardback, 510 pages, kõrgus x laius: 254x178 mm, kaal: 1133 g, 226 Tables, black and white; 383 Line drawings, black and white; 6 Halftones, black and white; 389 Illustrations, black and white
  • Ilmumisaeg: 09-Aug-2017
  • Kirjastus: CRC Press
  • ISBN-10: 1138031852
  • ISBN-13: 9781138031852
Teised raamatud teemal:
  • Kõva köide
  • Hind: 226,00 €*
  • * saadame teile pakkumise kasutatud raamatule, mille hind võib erineda kodulehel olevast hinnast
  • See raamat on trükist otsas, kuid me saadame teile pakkumise kasutatud raamatule.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Lisa soovinimekirja
  • Formaat: Hardback, 510 pages, kõrgus x laius: 254x178 mm, kaal: 1133 g, 226 Tables, black and white; 383 Line drawings, black and white; 6 Halftones, black and white; 389 Illustrations, black and white
  • Ilmumisaeg: 09-Aug-2017
  • Kirjastus: CRC Press
  • ISBN-10: 1138031852
  • ISBN-13: 9781138031852
Teised raamatud teemal:

This guidebook is a practical and essential tool providing everything necessary for structural design engineers to create detailed and accurate calculations.

Basic information is provided for steel, concrete and geotechnical design in accordance with Australian and international standards. Detailed design items are also provided, especially relevant to the mining and oil and gas industries. Examples include pipe supports, lifting analysis and dynamic machine foundation design.

Steel theory is presented with information on fabrication, transportation and costing, along with member, connection, and anchor design. Concrete design includes information on construction costs, as well as detailed calculations ranging from a simple beam design to the manual production of circular column interaction diagrams. For geotechnics, simple guidance is given on the manual production and code compliance of calculations for items such as pad footings, piles, retaining walls, and slabs. Each chapter also includes recommended drafting details to aid in the creation of design drawings.

More generally, highly useful aids for design engineers include section calculations and force diagrams. Capacity tables cover real-world items such as various slab thicknesses with a range of reinforcing options, commonly used steel sections, and lifting lug capacities. Calculations are given for wind, seismic, vehicular, piping, and other loads. User guides are included for Space Gass and Strand7, including a non-linear analysis example for lifting lug design. Users are also directed to popular vendor catalogues to acquire commonly used items, such as steel sections, handrails, grating, grouts and lifting devices.

This guidebook supports practicing engineers in the development of detailed designs and refinement of their engineering skill and knowledge.

Arvustused

"This book, although it is aimed primarily at structural engineers, will be a welcome and valuable addition to the shelves of civil engineers of any specialization. It sets out rational step-by-step procedures for undertaking projects, rather than merely focusing on the details of the methods of calculation, as many other texts do. It also helps to provide context for the analysis and design process. While the book is aimed at Australian engineers, the principles and sequence of the design processes should be relevant to all countries."

-- Professor Harry Poulos, Coffey Services

"This book provides valuable practical guidance to engineers with case example calculations which occur often in practice. It assists in applying and interpreting the Australian Standards for determining loads and designing structural elements in concrete and steel. It is a tool which any structural engineer would find useful."

--Laurie Dender, Tetra Tech Proteus

Preface xvii
Author xix
1 Setting up the project 1(8)
1.1 Basis of design
1(1)
1.2 Scope of works
2(1)
1.3 Deliverables list
2(1)
1.4 Budget
2(2)
1.5 Schedule
4(1)
1.6 Communications plan
4(1)
1.7 Structural design criteria
4(3)
1.7.1 Load factors and combinations
6(1)
1.7.2 Construction category
6(1)
1.8 Specifications
7(2)
2 Design 9(30)
2.1 Limit states design
9(1)
2.2 Standards and legislation
9(3)
2.3 Actions
12(23)
2.3.1 Wind
12(8)
2.3.1.1 Wind pressure
16(1)
2.3.1.2 Wind on piping
16(1)
2.3.1.3 Wind on exposed steelwork
17(2)
2.3.1.4 Wind on multiple items
19(1)
2.3.2 Seismic
20(11)
2.3.2.1 Earthquake design categories
21(1)
2.3.2.2 Site subsoil class
21(1)
2.3.2.3 Probability factor
21(2)
2.3.2.4 Hazard factor
23(1)
2.3.2.5 Design principles
23(3)
2.3.2.6 Earthquake design category 1 (EDC1)
26(1)
2.3.2.7 Earthquake design category 2 (EDC2)
26(5)
2.3.3 Dead and live loads
31(4)
2.3.3.1 Dead loads
31(1)
2.3.3.2 Live loads
31(2)
2.3.3.3 Buoyancy loads
33(1)
2.3.3.4 Vehicle loads
33(2)
2.4 Friction
35(1)
2.5 Deflections
35(4)
2.5.1 AS/NZS 1170 deflection requirements
35(1)
2.5.2 AS 3600 deflection requirements
35(1)
2.5.3 AS 4100 deflection requirements
35(4)
3 Steel design 39(102)
3.1 Material
39(3)
3.1.1 Cost
40(1)
3.1.2 Steel selection
41(1)
3.2 Fabrication and erection
42(2)
3.2.1 Framing system
42(1)
3.2.2 Coating system
42(2)
3.2.3 Transportation
44(1)
3.3 Analysis
44(2)
3.3.1 Section selection
45(1)
3.3.2 Notional forces
45(1)
3.3.3 Bracing
45(1)
3.3.4 Connection eccentricity
46(1)
3.4 Bending
46(20)
3.4.1 Section capacity
46(9)
3.4.1.1 Elastic section modulus
47(2)
3.4.1.2 Plastic section modulus
49(2)
3.4.1.3 Effective section modulus
51(4)
3.4.2 Member capacity
55(11)
3.4.2.1 Restraint types
55(3)
3.4.2.2 Restraint element definitions
58(1)
3.4.2.3 Members with full lateral restraint
59(1)
3.4.2.4 Members without full lateral restraint
60(6)
3.5 Shear
66(8)
3.5.1 Unstiffened webs
66(2)
3.5.1.1 Minimum web thickness
66(1)
3.5.1.2 Web capacity
67(1)
3.5.2 Combined bending and shear
68(1)
3.5.3 Globally stiffened webs
68(1)
3.5.4 Web bearing capacity
68(1)
3.5.5 Web bearing stiffeners
69(1)
3.5.6 Openings in webs
69(5)
3.6 Tension
74(1)
3.7 Compression
74(8)
3.7.1 Section compression capacity
75(1)
3.7.1.1 Effective cross-section
75(1)
3.7.2 Member compression capacity
76(6)
3.7.2.1 Effective length
79(1)
3.7.2.2 Braces
79(3)
3.8 Combined actions
82(5)
3.8.1 Combined section capacity
82(2)
3.8.1.1 Axial load with uniaxial bending about the major principal x-axis
82(1)
3.8.1.2 Axial load with uniaxial bending about the minor principal y-axis
83(1)
3.8.1.3 Axial load with biaxial bending
83(1)
3.8.2 Combined member capacity
84(3)
3.8.2.1 Axial load with uniaxial bending: Elastic analysis
84(2)
3.8.2.2 Axial load with uniaxial bending: Plastic analysis
86(1)
3.8.2.3 Axial load with biaxial bending
86(1)
3.9 Torsion
87(6)
3.9.1 Uniform torsion
87(1)
3.9.2 Warping torsion
88(1)
3.9.3 Non-uniform torsion
88(1)
3.9.4 Finite element analysis of torsion
88(1)
3.9.5 Torsion calculations
89(4)
3.9.5.1 Uniform torsion calculations
89(2)
3.9.5.2 Warping torsion calculations
91(2)
3.10 Connections
93(35)
3.10.1 Minimum actions
93(1)
3.10.2 Bolting
94(9)
3.10.2.1 Bolt capacities
94(3)
3.10.2.2 Bolt group analysis
97(2)
3.10.2.3 General bolting requirements
99(4)
3.10.3 Anchor bolts
103(5)
3.10.3.1 Grout
103(1)
3.10.3.2 Tension in anchor bolts
104(2)
3.10.3.3 Shear in anchor bolts
106(2)
3.10.3.4 Combined tension and shear in anchor bolts
108(1)
3.10.4 Pin connections
108(1)
3.10.5 Welding
109(9)
3.10.5.1 Weld capacities
110(2)
3.10.5.2 Weld group analysis
112(4)
3.10.5.3 Weld symbols
116(1)
3.10.5.4 General weld requirements
117(1)
3.10.6 Plate analysis
118(10)
3.10.6.1 Tension
118(1)
3.10.6.2 Ply in bearing
119(1)
3.10.6.3 Block shear
119(1)
3.10.6.4 Compression
120(1)
3.10.6.5 Shear
120(1)
3.10.6.6 Bending
120(2)
3.10.6.7 Yield line analysis
122(2)
3.10.6.8 Base plates in compression
124(4)
3.11 Elastic stress analysis
128(5)
3.11.1 Principal stresses
128(1)
3.11.2 Shear stresses
128(1)
3.11.3 Typical beam stresses
129(1)
3.11.4 Combined stress
129(4)
3.12 Steel detailing
133(8)
3.12.1 Steel notes
133(1)
3.12.1.1 General
133(1)
3.12.1.2 Steel
134(1)
3.12.1.3 Welding
134(1)
3.12.1.4 Bolting
134(1)
3.12.1.5 Surface protection
134(1)
3.12.1.6 Grouting
134(1)
3.12.2 Additional steel details
134(1)
3.12.3 Coping
135(1)
3.12.4 Bracing cleat
135(1)
3.12.5 Web side plate
136(1)
3.12.6 End plates
137(1)
3.12.7 Bolted moment connections
137(1)
3.12.8 Welded moment connections
137(2)
3.12.9 Base plates
139(2)
4 Concrete design 141(76)
4.1 Material
141(10)
4.1.1 Concrete
141(1)
4.1.2 Reinforcement
142(1)
4.1.3 Cost
142(2)
4.1.4 Cover
144(1)
4.1.5 Bar development
145(6)
4.1.5.1 Bars in tension
147(3)
4.1.5.2 Lapped splices in tension
150(1)
4.1.5.3 Bars in compression
150(1)
4.1.5.4 Lapped splices in compression
150(1)
4.2 Beams
151(18)
4.2.1 Reinforcement requirements
151(1)
4.2.2 Crack control
151(1)
4.2.3 Beams in bending
152(7)
4.2.3.1 Minimum strength requirements
153(1)
4.2.3.2 Ultimate strength in bending
153(1)
4.2.3.3 Singly reinforced beam
154(1)
4.2.3.4 Doubly reinforced beam
155(1)
4.2.3.5 Assumption method
156(3)
4.2.4 Beams in shear
159(5)
4.2.4.1 Ultimate shear strength
159(1)
4.2.4.2 Area of shear reinforcement
159(1)
4.2.4.3 Minimum shear strength
160(1)
4.2.4.4 Concrete shear strength
160(1)
4.2.4.5 Shear strength of ligatures
161(1)
4.2.4.6 Maximum shear strength
161(3)
4.2.5 Beams in torsion
164(5)
4.2.5.1 Torsion in beams without closed fitments
164(1)
4.2.5.2 Torsion in beams with closed fitments
165(4)
4.3 Slabs
169(11)
4.3.1 Reinforcement requirements
170(1)
4.3.1.1 Tensile reinforcement detailing
170(1)
4.3.2 Crack control
171(1)
4.3.2.1 Reinforcement in the primary direction
171(1)
4.3.2.2 Reinforcement in the secondary direction
171(1)
4.3.3 Analysis
172(2)
4.3.3.1 Negative moment calculation
172(1)
4.3.3.2 Positive moment calculation
173(1)
4.3.3.3 Transverse shear calculation
173(1)
4.3.4 Bending
174(1)
4.3.5 Shear
174(2)
4.3.5.1 Standard shear
174(1)
4.3.5.2 Punching shear
174(2)
4.3.6 Deflection check
176(4)
4.3.6.1 Deemed-to-comply span/depth procedure
176(4)
4.4 Columns
180(16)
4.4.1 Reinforcement requirements
180(1)
4.4.2 Effective length
181(1)
4.4.3 Short columns
181(1)
4.4.4 Slender columns
182(1)
4.4.5 Columns in compression and bending
183(13)
4.4.5.1 Squash load point
183(1)
4.4.5.2 Squash load point through to decompression point
184(1)
4.4.5.3 Decompression point through to pure bending
184(1)
4.4.5.4 Decompression point
185(1)
4.4.5.5 Balanced point
185(1)
4.4.5.6 Pure bending point
185(1)
4.4.5.7 Rectangular cross-sections
185(3)
4.4.5.8 Circular cross-sections
188(8)
4.5 Elastic analysis
196(5)
4.5.1 Calculate depth to neutral axis
196(2)
4.5.2 Calculate moment of inertia
198(1)
4.5.3 Calculate stress
198(1)
4.5.4 Calculate strain
199(2)
4.6 Strut and tie
201(10)
4.6.1 Ties
201(1)
4.6.2 Struts
202(1)
4.6.3 Bursting reinforcement
203(2)
4.6.4 Nodes
205(6)
4.7 Concrete detailing
211(6)
4.7.1 Concrete notes
211(1)
4.7.1.1 General
212(1)
4.7.1.2 Concrete
212(1)
4.7.1.3 Reinforcement
212(1)
4.7.2 Additional concrete details
212(1)
4.7.3 Miscellaneous details
212(5)
5 Geotechnical 217(60)
5.1 Pad footings
217(11)
5.1.1 Stability
217(3)
5.1.2 Bearing capacity
220(3)
5.1.2.1 Linear elastic bearing pressures
220(1)
5.1.2.2 Plastic bearing pressures
221(1)
5.1.2.3 Brinch-Hansen design method
222(1)
5.1.3 Pad footing detailing
223(5)
5.2 Piles
228(14)
5.2.1 Structural requirements for piles
228(3)
5.2.1.1 Concrete piles
228(2)
5.2.1.2 Steel piles
230(1)
5.2.2 Vertically loaded piles
231(1)
5.2.2.1 Pile groups and spacing
232(1)
5.2.2.2 Induced bending moment
232(1)
5.2.3 Settlement
232(1)
5.2.4 Laterally loaded piles
233(6)
5.2.4.1 Short piles
235(4)
5.2.4.2 Long piles
239(1)
5.2.4.3 Pile deflections
239(1)
5.2.5 Pile detailing
239(3)
5.3 Retaining walls
242(13)
5.3.1 Code requirements
243(1)
5.3.1.1 Loads and surcharges
243(1)
5.3.1.2 Material design factors
243(1)
5.3.1.3 Load combinations
244(1)
5.3.2 Rankine pressure method
244(2)
5.3.3 Coulomb wedge method
246(2)
5.3.4 Compaction-induced pressure
248(1)
5.3.5 Stability
248(2)
5.3.6 Bearing pressure
250(1)
5.3.7 Typical soil properties
250(1)
5.3.8 Retaining wall detailing
250(5)
5.4 Slabs on grade
255(13)
5.4.1 Preliminary sizing
256(1)
5.4.2 Soil parameters
256(2)
5.4.2.1 California bearing ratio (CBR)
256(1)
5.4.2.2 Modulus of subgrade reaction
257(1)
5.4.2.3 Young's modulus and Poisson's ratio
258(1)
5.4.3 Loads
258(2)
5.4.4 Analysis
260(1)
5.4.4.1 Linear and non-linear analysis using modulus of subgrade reaction
260(1)
5.4.4.2 Finite element analysis using Young's modulus and Poisson's ratio
261(1)
5.4.5 Crack control
261(1)
5.4.6 Joints
261(6)
5.4.6.1 Control joints
262(1)
5.4.6.2 Isolation joints
262(1)
5.4.6.3 Construction joints
262(2)
5.4.6.4 Expansion joints
264(1)
5.4.6.5 Joint armouring
264(1)
5.4.6.6 Joint movement
264(3)
5.4.7 Dowels
267(1)
5.5 Shrink-swell movement
268(9)
5.5.1 Investigation
269(1)
5.5.2 Calculation of characteristic surface movement
269(7)
5.5.2.1 Swelling profile
269(2)
5.5.2.2 Depth of cracking
271(1)
5.5.2.3 Existence of cut or fill
271(1)
5.5.2.4 Characteristic surface movement
271(1)
5.5.2.5 Site classification
271(2)
5.5.2.6 Soil structure interaction: Heave
273(2)
5.5.2.7 Load combinations
275(1)
5.5.2.8 Modelling
275(1)
5.5.3 Shrink-swell detailing
276(1)
6 Design items 277(82)
6.1 Pipe racks (pipe stress)
277(8)
6.1.1 Pipe stress
277(5)
6.1.1.1 Support spacing
278(1)
6.1.1.2 Technical requirements
278(1)
6.1.1.3 Load cases
279(1)
6.1.1.4 Load combinations
280(1)
6.1.1.5 Support types
281(1)
6.1.2 Other pipe rack loads
282(1)
6.1.3 Pre-assembled units (PAUs)
282(7)
6.1.3.1 Transportation and load restraint
283(2)
6.2 Vessels and tanks
285(4)
6.3 Lifting lugs
289(8)
6.3.1 Design factors
290(1)
6.3.2 Placement of lugs
291(1)
6.3.3 Marking
292(1)
6.3.4 Dimensional requirements
292(1)
6.3.5 Calculations
292(4)
6.3.6 Lifting lug detailing
296(1)
6.4 Machine foundations
297(9)
6.4.1 Rule of thumb sizing
297(2)
6.4.2 Natural frequency analysis
299(1)
6.4.3 Harmonic response analysis
300(1)
6.4.3.1 Damping
300(1)
6.4.4 Dynamic load
301(2)
6.4.5 Acceptance criteria
303(1)
6.4.6 General design requirements
303(2)
6.4.6.1 Construction requirements
304(1)
6.4.7 Design methodology
305(1)
6.5 Access (Stairs, ladders and handrails)
306(5)
6.5.1 Walkways
306(1)
6.5.2 Stairs
306(2)
6.5.3 Ladders
308(3)
6.5.3.1 Stair and ladder detailing
308(3)
6.6 Temperature variation
311(5)
6.6.1 Minimum temperature (AS 4100)
311(1)
6.6.2 Steel grade selection
312(1)
6.6.3 Temperature range (bridges)
312(2)
6.6.4 Installation temperature and design range
314(1)
6.6.5 Change in properties with high temperatures
315(1)
6.7 Composite beams and slabs
316(9)
6.7.1 Bending design
317(5)
6.7.1.1 Case 1: Neutral axis in concrete slab
320(1)
6.7.1.2 Case 2: Neutral axis in steel sheeting
320(1)
6.7.1.3 Case 3: Neutral axis in top flange
321(1)
6.7.1.4 Case 4: Neutral axis in web
321(1)
6.7.2 Shear stud design
322(2)
6.7.2.1 AS 2327.1 Shear stud design
322(1)
6.7.2.2 AS 5100.6 Shear stud design
323(1)
6.7.3 Elastic transformed stress analysis
324(1)
6.8 Bunds
325(2)
6.8.1 The storage and handling of flammable and combustible liquids, AS 1940
326(1)
6.8.2 Substations and high-voltage installations exceeding 1 kV a.c., AS 2067
326(1)
6.9 Concrete structures for retaining liquids
327(19)
6.9.1 Loads
328(3)
6.9.1.1 Hydrostatic pressure
328(1)
6.9.1.2 Temperature
329(1)
6.9.1.3 Moisture variation
329(1)
6.9.1.4 Seismic
330(1)
6.9.1.5 Earth pressures
330(1)
6.9.1.6 Wind
330(1)
6.9.1.7 Buoyancy
331(1)
6.9.2 Load combinations
331(1)
6.9.2.1 Serviceability combination cases
331(1)
6.9.2.2 Strength combination cases
331(1)
6.9.3 Durability
332(3)
6.9.3.1 Exposure classification
332(1)
6.9.3.2 Concrete requirements
333(2)
6.9.4 Crack control
335(1)
6.9.5 Analysis
336(1)
6.9.6 Serviceability
337(2)
6.9.7 Design
339(1)
6.9.8 Concrete structures for retaining liquids detailing
339(1)
6.9.9 Construction and testing
340(1)
6.10 Linear and non-linear analysis (Space Gass)
340(1)
6.10.1 T-post design model
341(5)
6.10.1.1 Create geometry of model
341(5)
6.11 Finite element analysis (Strand7)
346(13)
6.11.1 Linear analysis
346(5)
6.11.1.1 Concrete slab model (linear)
346(5)
6.11.2 Non-linear analysis
351(8)
6.11.2.1 Steel connection model (linear and non-linear)
352(7)
7 Design aids 359(118)
7.1 Section calculations
359(1)
7.2 Force diagrams
359(1)
7.3 Design catalogues and capacity tables
359(118)
7.3.1 Steel catalogues and capacity tables
360(107)
7.3.1.1 Bolt capacity
360(1)
7.3.1.2 Weld capacity
360(6)
7.3.1.3 Steel plates
366(1)
7.3.1.4 Steel flats
366(3)
7.3.1.5 Steel square sections
369(1)
7.3.1.6 Steel round sections
369(1)
7.3.1.7 Plate capacities
369(1)
7.3.1.8 Pin capacities
369(1)
7.3.1.9 Steel sections (welded, hot rolled and cold formed)
370(1)
7.3.1.10 Members subject to bending
371(1)
7.3.1.11 Members subject to axial compression
371(96)
7.3.2 Concrete catalogues and capacity tables
467(10)
7.3.2.1 Concrete reinforcement
467(1)
7.3.2.2 Slabs
467(1)
7.3.2.3 Beams
467(1)
7.3.2.4 Columns
467(10)
8 Vendor catalogues 477(2)
9 Notations and abbreviations 479(2)
References 481(4)
Index 485
Lonnie Pack is a Chartered Professional Engineer through Engineers Australia, a Registered Professional Engineer of Queensland, and a member of the Institute or Engineers Australia (MIEAust).

Hed has worked in the Mining and Oil & Gas industries, formerly CEO of the Graduate Development Organisation and subject matter expert for coal seam gas projects at WorleyParsons. He has managed teams of more than twenty people in the design of greenfield projects as well as smaller scale brownfield works. Projects have been delivered via traditional (stickbuilt) methods as well as modular (preassembled) designs.

He has presented on Machine Foundation Design at Engineers Australia. Lonnie has led teams in Australia and overseas in the design of gas plants and mining structures. His experience includes

Now at Tetra Tech Proteus he is a Lead Engineer and Project Manager in the brownfield design of mining structures, using advanced technical design skills such as Finite Element Analysis, impact analysis and dynamic design.