Muutke küpsiste eelistusi

Automotive Security Analyzer for Exploitability Risks: An Automated and Attack Graph-Based Evaluation of On-Board Networks 2024 ed. [Pehme köide]

  • Formaat: Paperback / softback, 243 pages, kõrgus x laius: 210x148 mm, 48 Illustrations, color; 10 Illustrations, black and white; XXV, 243 p. 58 illus., 48 illus. in color. Textbook for German language market., 1 Paperback / softback
  • Ilmumisaeg: 16-Mar-2024
  • Kirjastus: Springer Vieweg
  • ISBN-10: 3658435054
  • ISBN-13: 9783658435059
Teised raamatud teemal:
  • Pehme köide
  • Hind: 104,29 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 122,69 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 243 pages, kõrgus x laius: 210x148 mm, 48 Illustrations, color; 10 Illustrations, black and white; XXV, 243 p. 58 illus., 48 illus. in color. Textbook for German language market., 1 Paperback / softback
  • Ilmumisaeg: 16-Mar-2024
  • Kirjastus: Springer Vieweg
  • ISBN-10: 3658435054
  • ISBN-13: 9783658435059
Teised raamatud teemal:
Our lives depend on automotive cybersecurity, protecting us inside and near vehicles. If vehicles go rogue, they can operate against the drivers will and potentially drive off a cliff or into a crowd. The Automotive Security Analyzer for Exploitability Risks (AutoSAlfER) evaluates the exploitability risks of automotive on-board networks by attack graphs. AutoSAlfERs Multi-Path Attack Graph algorithm is 40 to 200 times smaller in RAM and 200 to 5 000 times faster than a comparable implementation using Bayesian networks, and the Single-Path Attack Graph algorithm constructs the most reasonable attack path per asset with a computational, asymptotic complexity of only O(n * log(n)), instead of O(n²). AutoSAlfER runs on a self-written graph database, heuristics, pruning, and homogenized Gaussian distributions and boosts peoples productivity for a more sustainable and secure automotive on-board network. Ultimately, we enjoy more safety and security in and around autonomous, connected, electrified, and shared vehicles.
Introduction.- Basics and Related Work.- Models.- Single-Path Attack
Graph Algorithm.- Multi-Path Attack Graph Algorithm.- Conclusion.- References
Dr. Martin Salfer is an IT security researcher at TUM and a tech lead at an automaker. He earned his Ph.D. in IT Security from TUM, completed his M.Sc. with honours in Software Engineering at UniA/LMU/TUM, and obtained his B.Sc. in Computer Science from HM, with a study abroad at KPU in Vancouver, Canada, and ESIEA in Paris, France, and a research visit at NII in Tokyo, Japan. He is the lead author of 28 publications, including five IT security patents.