|
|
1 | (16) |
|
|
1 | (5) |
|
|
6 | (2) |
|
1.3 Methodological Errors |
|
|
8 | (1) |
|
|
9 | (3) |
|
|
12 | (1) |
|
|
13 | (4) |
|
Part I Deterministic Methods |
|
|
|
2 Numerical Differentiation |
|
|
17 | (12) |
|
|
17 | (1) |
|
|
18 | (2) |
|
2.3 Finite Difference Derivatives |
|
|
20 | (2) |
|
2.4 A Systematic Approach: The Operator Technique |
|
|
22 | (3) |
|
2.5 Concluding Discussion |
|
|
25 | (2) |
|
|
27 | (1) |
|
|
28 | (1) |
|
|
28 | (1) |
|
|
29 | (22) |
|
|
29 | (1) |
|
|
30 | (3) |
|
|
33 | (2) |
|
|
35 | (1) |
|
3.5 General Formulation: The Newton-Cotes Rules |
|
|
36 | (2) |
|
3.6 Gauss-Legendre Quadrature |
|
|
38 | (6) |
|
|
44 | (1) |
|
3.8 Concluding Discussion |
|
|
45 | (2) |
|
|
47 | (1) |
|
|
48 | (1) |
|
|
49 | (2) |
|
|
51 | (10) |
|
|
51 | (1) |
|
|
52 | (2) |
|
|
54 | (5) |
|
|
59 | (1) |
|
|
59 | (2) |
|
5 Ordinary Differential Equations: Initial Value Problems |
|
|
61 | (20) |
|
|
61 | (1) |
|
|
62 | (4) |
|
|
66 | (5) |
|
5.4 Hamiltonian Systems: Symplectic Integrators |
|
|
71 | (2) |
|
5.5 An Example: The Kepler Problem, Revisited |
|
|
73 | (5) |
|
|
78 | (1) |
|
|
79 | (1) |
|
|
79 | (2) |
|
|
81 | (16) |
|
|
81 | (4) |
|
|
85 | (3) |
|
6.3 Numerical Analysis of Chaos |
|
|
88 | (7) |
|
|
95 | (1) |
|
|
95 | (1) |
|
|
96 | (1) |
|
|
97 | (14) |
|
|
97 | (1) |
|
7.2 Classical Molecular Dynamics |
|
|
97 | (5) |
|
7.3 Numerical Implementation |
|
|
102 | (5) |
|
|
107 | (1) |
|
|
108 | (1) |
|
|
109 | (2) |
|
8 Numerics of Ordinary Differential Equations: Boundary Value Problems |
|
|
111 | (12) |
|
|
111 | (2) |
|
8.2 Finite Difference Approach |
|
|
113 | (5) |
|
|
118 | (3) |
|
|
121 | (1) |
|
|
122 | (1) |
|
9 The One-Dimensional Stationary Heat Equation |
|
|
123 | (8) |
|
|
123 | (1) |
|
|
124 | (2) |
|
|
126 | (2) |
|
|
128 | (1) |
|
|
129 | (1) |
|
|
129 | (2) |
|
10 The One-Dimensional Stationary Schrodinger Equation |
|
|
131 | (16) |
|
|
131 | (3) |
|
10.2 A Simple Example: The Particle in a Box |
|
|
134 | (5) |
|
|
139 | (3) |
|
|
142 | (3) |
|
|
145 | (1) |
|
|
146 | (1) |
|
|
146 | (1) |
|
11 Partial Differential Equations |
|
|
147 | (24) |
|
|
147 | (1) |
|
11.2 The Poisson Equation |
|
|
148 | (3) |
|
11.3 The Time-Dependent Heat Equation |
|
|
151 | (6) |
|
|
157 | (3) |
|
11.5 The Time-Dependent Schrodinger Equation |
|
|
160 | (7) |
|
|
167 | (1) |
|
|
167 | (1) |
|
|
168 | (3) |
|
Part II Stochastic Methods |
|
|
|
12 Pseudo Random Number Generators |
|
|
171 | (14) |
|
|
171 | (3) |
|
12.2 Different Approaches |
|
|
174 | (4) |
|
|
178 | (4) |
|
|
182 | (1) |
|
|
182 | (1) |
|
|
183 | (2) |
|
13 Random Sampling Methods |
|
|
185 | (12) |
|
|
185 | (2) |
|
13.2 Inverse Transformation Method |
|
|
187 | (3) |
|
|
190 | (3) |
|
|
193 | (2) |
|
|
195 | (1) |
|
|
195 | (2) |
|
14 A Brief Introduction to Monte-Carlo Methods |
|
|
197 | (12) |
|
|
197 | (1) |
|
14.2 Monte-Carlo Integration |
|
|
198 | (7) |
|
14.3 The Metropolis Algorithm: An Introduction |
|
|
205 | (3) |
|
|
208 | (1) |
|
|
208 | (1) |
|
|
209 | (20) |
|
|
209 | (9) |
|
|
218 | (5) |
|
|
223 | (4) |
|
|
227 | (1) |
|
|
228 | (1) |
|
|
228 | (1) |
|
16 Some Basics of Stochastic Processes |
|
|
229 | (22) |
|
|
229 | (1) |
|
16.2 Stochastic Processes |
|
|
230 | (3) |
|
|
233 | (8) |
|
|
241 | (6) |
|
16.5 Continuous-Time MARKov-Chains |
|
|
247 | (2) |
|
|
249 | (1) |
|
|
250 | (1) |
|
|
250 | (1) |
|
17 The Random Walk and Diffusion Theory |
|
|
251 | (24) |
|
|
251 | (2) |
|
|
253 | (6) |
|
17.3 The Wiener Process and Brownian Motion |
|
|
259 | (6) |
|
17.4 Generalized Diffusion Models |
|
|
265 | (7) |
|
|
272 | (1) |
|
|
272 | (1) |
|
|
273 | (2) |
|
18 Markov-Chain Monte Carlo and the Potts Model |
|
|
275 | (12) |
|
|
275 | (1) |
|
18.2 Markov-Chain Monte Carlo Methods |
|
|
276 | (3) |
|
|
279 | (5) |
|
18.4 Advanced Algorithms for the Potts Model |
|
|
284 | (1) |
|
|
285 | (1) |
|
|
286 | (1) |
|
|
286 | (1) |
|
|
287 | (12) |
|
|
287 | (1) |
|
19.2 Calculation of Errors |
|
|
287 | (4) |
|
|
291 | (4) |
|
19.4 The Histogram Technique |
|
|
295 | (1) |
|
|
296 | (1) |
|
|
297 | (1) |
|
|
297 | (2) |
|
20 Stochastic Optimization |
|
|
299 | (16) |
|
|
299 | (2) |
|
|
301 | (2) |
|
|
303 | (7) |
|
|
310 | (2) |
|
20.5 Some Further Methods |
|
|
312 | (1) |
|
|
313 | (1) |
|
|
314 | (1) |
|
|
314 | (1) |
Appendix A The Two-Body Problem |
|
315 | (6) |
Appendix B Solving Non-Linear Equations: The Newton Method |
|
321 | (2) |
Appendix C Numerical Solution of Linear Systems of Equations |
|
323 | (8) |
Appendix D Basics of Probability Theory |
|
331 | (14) |
Appendix E Phase Transitions |
|
345 | (4) |
Appendix F Fractional Integrals and Derivatives in 1D |
|
349 | (2) |
Appendix G Least Squares Fit |
|
351 | (6) |
Appendix H Deterministic Optimization |
|
357 | (12) |
Index |
|
369 | |