|
|
xvii | |
|
|
xxi | |
Preface |
|
xxiii | |
About the Authors |
|
xxvii | |
|
I PROBABILISTIC REASONING |
|
|
1 | (180) |
|
|
3 | (26) |
|
1.1 Reasoning under uncertainty |
|
|
3 | (1) |
|
|
4 | (1) |
|
|
5 | (5) |
|
1.3.1 Conditional probability theorems |
|
|
8 | (1) |
|
|
9 | (1) |
|
1.4 Interpretations of probability |
|
|
10 | (2) |
|
|
12 | (9) |
|
|
12 | (2) |
|
|
14 | (1) |
|
|
15 | (1) |
|
|
16 | (1) |
|
1.5.5 Bayesian reasoning examples |
|
|
17 | (1) |
|
|
17 | (1) |
|
1.5.5.2 People v. Collins |
|
|
18 | (3) |
|
1.6 The goal of Bayesian AI |
|
|
21 | (1) |
|
1.7 Achieving Bayesian AI |
|
|
22 | (1) |
|
1.8 Are Bayesian networks Bayesian? |
|
|
22 | (1) |
|
|
23 | (1) |
|
|
24 | (1) |
|
|
24 | (1) |
|
|
25 | (4) |
|
2 Introducing Bayesian Networks |
|
|
29 | (26) |
|
|
29 | (1) |
|
2.2 Bayesian network basics |
|
|
29 | (4) |
|
|
30 | (1) |
|
|
31 | (1) |
|
2.2.3 Conditional probabilities |
|
|
32 | (1) |
|
2.2.4 The Markov property |
|
|
33 | (1) |
|
2.3 Reasoning with Bayesian networks |
|
|
33 | (4) |
|
|
34 | (1) |
|
|
35 | (1) |
|
2.3.3 Reasoning with numbers |
|
|
36 | (1) |
|
2.4 Understanding Bayesian networks |
|
|
37 | (6) |
|
2.4.1 Representing the joint probability distribution |
|
|
37 | (1) |
|
2.4.2 Pearl's network construction algorithm |
|
|
37 | (1) |
|
2.4.3 Compactness and node ordering |
|
|
38 | (1) |
|
2.4.4 Conditional independence |
|
|
39 | (1) |
|
|
39 | (1) |
|
|
40 | (1) |
|
|
40 | (1) |
|
|
41 | (2) |
|
|
43 | (2) |
|
|
43 | (1) |
|
|
44 | (1) |
|
|
44 | (1) |
|
|
45 | (1) |
|
|
45 | (5) |
|
|
50 | (5) |
|
3 Inference in Bayesian Networks |
|
|
55 | (42) |
|
|
55 | (1) |
|
3.2 Exact inference in chains |
|
|
56 | (2) |
|
|
56 | (1) |
|
|
57 | (1) |
|
3.3 Exact inference in polytrees |
|
|
58 | (6) |
|
3.3.1 Kim and Pearl's message passing algorithm |
|
|
59 | (3) |
|
3.3.2 Message passing example |
|
|
62 | (2) |
|
|
64 | (1) |
|
3.4 Inference with uncertain evidence |
|
|
64 | (5) |
|
3.4.1 Using a virtual node |
|
|
65 | (2) |
|
3.4.2 Virtual nodes in the message passing algorithm |
|
|
67 | (1) |
|
3.4.3 Multiple virtual evidence |
|
|
67 | (2) |
|
3.5 Exact inference in multiply-connected networks |
|
|
69 | (5) |
|
|
69 | (2) |
|
|
71 | (3) |
|
3.6 Approximate inference with stochastic simulation |
|
|
74 | (6) |
|
|
75 | (1) |
|
3.6.2 Likelihood weighting |
|
|
76 | (2) |
|
3.6.3 Markov Chain Monte Carlo (MCMC) |
|
|
78 | (1) |
|
3.6.4 Using virtual evidence |
|
|
78 | (1) |
|
3.6.5 Assessing approximate inference algorithms |
|
|
78 | (2) |
|
|
80 | (1) |
|
|
80 | (1) |
|
3.7.2 Probability of evidence |
|
|
80 | (1) |
|
|
81 | (8) |
|
3.8.1 Observation vs. intervention |
|
|
81 | (2) |
|
3.8.2 Defining an intervention |
|
|
83 | (1) |
|
3.8.3 Categories of intervention |
|
|
84 | (2) |
|
3.8.4 Modeling effectiveness |
|
|
86 | (1) |
|
3.8.5 Representing interventions |
|
|
87 | (2) |
|
|
89 | (1) |
|
|
89 | (2) |
|
|
91 | (6) |
|
|
97 | (36) |
|
|
97 | (1) |
|
|
97 | (2) |
|
4.3 Decision network basics |
|
|
99 | (7) |
|
|
99 | (1) |
|
4.3.2 Football team example |
|
|
100 | (1) |
|
4.3.3 Evaluating decision networks |
|
|
101 | (1) |
|
|
102 | (2) |
|
|
104 | (1) |
|
|
104 | (2) |
|
4.4 Sequential decision making |
|
|
106 | (6) |
|
4.4.1 Test-action combination |
|
|
106 | (1) |
|
4.4.2 Real estate investment example |
|
|
107 | (2) |
|
4.4.3 Evaluation using a decision tree model |
|
|
109 | (2) |
|
4.4.4 Value of information |
|
|
111 | (1) |
|
4.4.5 Direct evaluation of decision networks |
|
|
112 | (1) |
|
4.5 Dynamic Bayesian networks |
|
|
112 | (6) |
|
4.5.1 Nodes, structure and CPTs |
|
|
113 | (2) |
|
|
115 | (2) |
|
4.5.3 Inference algorithms for DBNs |
|
|
117 | (1) |
|
4.6 Dynamic decision networks |
|
|
118 | (2) |
|
4.6.1 Mobile robot example |
|
|
119 | (1) |
|
4.7 Object-oriented Bayesian networks |
|
|
120 | (6) |
|
|
120 | (2) |
|
|
122 | (1) |
|
|
123 | (2) |
|
4.7.4 "is-A" relationship: Class inheritance |
|
|
125 | (1) |
|
|
126 | (1) |
|
|
127 | (1) |
|
|
127 | (6) |
|
5 Applications of Bayesian Networks |
|
|
133 | (48) |
|
|
133 | (1) |
|
5.2 A brief survey of BN applications |
|
|
134 | (11) |
|
|
134 | (1) |
|
5.2.2 Medical Applications |
|
|
135 | (3) |
|
5.2.3 Ecological and environmental applications |
|
|
138 | (2) |
|
|
140 | (5) |
|
5.3 Cardiovascular risk assessment |
|
|
145 | (7) |
|
5.3.1 Epidemiology models for cardiovascular heart disease |
|
|
145 | (1) |
|
5.3.2 The Busselton network |
|
|
146 | (1) |
|
|
146 | (1) |
|
5.3.2.2 Parameters and discretization |
|
|
147 | (1) |
|
|
148 | (1) |
|
|
148 | (1) |
|
5.3.3.2 Parameters and discretization |
|
|
148 | (2) |
|
|
150 | (1) |
|
|
151 | (1) |
|
|
152 | (1) |
|
5.4 Goulburn Catchment Ecological Risk Assessment |
|
|
152 | (4) |
|
5.4.1 Background: Goulburn Catchment |
|
|
153 | (1) |
|
5.4.2 The Bayesian network |
|
|
154 | (1) |
|
|
155 | (1) |
|
|
155 | (1) |
|
|
156 | (1) |
|
|
156 | (7) |
|
5.5.1 Five-card stud poker |
|
|
156 | (2) |
|
5.5.2 A decision network for poker |
|
|
158 | (1) |
|
|
158 | (1) |
|
|
159 | (1) |
|
5.5.2.3 Conditional probability tables |
|
|
159 | (1) |
|
|
159 | (1) |
|
|
160 | (1) |
|
|
160 | (1) |
|
5.5.3 Betting with randomization |
|
|
161 | (1) |
|
|
162 | (1) |
|
5.5.5 Experimental evaluation |
|
|
162 | (1) |
|
5.6 Ambulation monitoring and fall detection |
|
|
163 | (6) |
|
|
163 | (1) |
|
|
164 | (1) |
|
|
164 | (1) |
|
5.6.2.2 Structure and CPTs |
|
|
165 | (2) |
|
5.6.3 Case-based evaluation |
|
|
167 | (1) |
|
5.6.4 An extended sensor model |
|
|
167 | (2) |
|
5.7 A Nice Argument Generator (NAG) |
|
|
169 | (7) |
|
|
170 | (2) |
|
5.7.2 Example: An asteroid strike |
|
|
172 | (1) |
|
5.7.3 The psychology of inference |
|
|
173 | (1) |
|
5.7.4 Example: The asteroid strike continues |
|
|
174 | (1) |
|
5.7.5 The future of argumentation |
|
|
175 | (1) |
|
|
176 | (1) |
|
|
177 | (1) |
|
|
178 | (3) |
|
II LEARNING CAUSAL MODELS |
|
|
181 | (112) |
|
|
185 | (20) |
|
|
185 | (1) |
|
6.2 Parameterizing discrete models |
|
|
185 | (5) |
|
6.2.1 Parameterizing a binomial model |
|
|
185 | (1) |
|
6.2.1.1 The beta distribution |
|
|
186 | (2) |
|
6.2.2 Parameterizing a multinomial model |
|
|
188 | (2) |
|
|
190 | (6) |
|
6.3.1 The Bayesian solution |
|
|
191 | (1) |
|
6.3.2 Approximate solutions |
|
|
192 | (1) |
|
|
192 | (2) |
|
6.3.2.2 Expectation maximization |
|
|
194 | (2) |
|
6.3.3 Incomplete data: summary |
|
|
196 | (1) |
|
6.4 Learning local structure |
|
|
196 | (5) |
|
|
197 | (1) |
|
6.4.2 Noisy-or connections |
|
|
197 | (1) |
|
6.4.3 Classification trees and graphs |
|
|
198 | (2) |
|
|
200 | (1) |
|
|
201 | (1) |
|
|
201 | (1) |
|
|
202 | (1) |
|
|
202 | (3) |
|
7 Bayesian Network Classifiers |
|
|
205 | (26) |
|
|
205 | (1) |
|
|
206 | (2) |
|
7.3 Semi-naive Bayes models |
|
|
208 | (1) |
|
7.4 Ensemble Bayes prediction |
|
|
209 | (2) |
|
7.5 The evaluation of classifiers |
|
|
211 | (16) |
|
7.5.1 Predictive accuracy |
|
|
211 | (2) |
|
|
213 | (2) |
|
|
215 | (2) |
|
|
217 | (3) |
|
|
220 | (2) |
|
7.5.6 Proper scoring rules |
|
|
222 | (1) |
|
|
223 | (2) |
|
7.5.8 Bayesian information reward |
|
|
225 | (2) |
|
|
227 | (1) |
|
|
227 | (1) |
|
|
228 | (1) |
|
|
229 | (2) |
|
8 Learning Linear Causal Models |
|
|
231 | (24) |
|
|
231 | (2) |
|
|
233 | (8) |
|
8.2.1 Wright's first decomposition rule |
|
|
235 | (3) |
|
8.2.2 Parameterizing linear models |
|
|
238 | (1) |
|
8.2.3 Learning linear models is complex |
|
|
239 | (2) |
|
8.3 Constraint-based learners |
|
|
241 | (9) |
|
|
244 | (1) |
|
|
245 | (2) |
|
8.3.1.2 Markov equivalence summary |
|
|
247 | (1) |
|
|
247 | (2) |
|
8.3.3 Causal discovery versus regression |
|
|
249 | (1) |
|
|
250 | (1) |
|
|
250 | (1) |
|
|
250 | (2) |
|
|
252 | (3) |
|
9 Learning Discrete Causal Structure |
|
|
255 | (38) |
|
|
255 | (1) |
|
9.2 Cooper and Herskovits's K2 |
|
|
256 | (3) |
|
9.2.1 Learning variable order |
|
|
258 | (1) |
|
|
259 | (5) |
|
9.3.1 Lam and Bacchus's MDL code for causal models |
|
|
261 | (2) |
|
9.3.2 Suzuki's MDL code for causal discovery |
|
|
263 | (1) |
|
9.4 Metric pattern discovery |
|
|
264 | (1) |
|
9.5 CaMML: Causal discovery via MML |
|
|
265 | (4) |
|
9.5.1 An MML code for causal structures |
|
|
266 | (1) |
|
9.5.1.1 Totally ordered models (TOMs) |
|
|
267 | (1) |
|
9.5.2 An MML metric for linear models |
|
|
268 | (1) |
|
9.6 CaMML stochastic search |
|
|
269 | (7) |
|
9.6.1 Genetic algorithm (GA) search |
|
|
269 | (1) |
|
|
270 | (2) |
|
|
272 | (2) |
|
9.6.4 An MML metric for discrete models |
|
|
274 | (1) |
|
9.6.5 Learning hybrid models |
|
|
275 | (1) |
|
9.7 Problems with causal discovery |
|
|
276 | (9) |
|
9.7.1 The causal Markov condition |
|
|
276 | (3) |
|
|
279 | (5) |
|
9.7.3 Learning in high-dimensional spaces |
|
|
284 | (1) |
|
9.8 Evaluating causal discovery |
|
|
285 | (4) |
|
9.8.1 Qualitative evaluation |
|
|
285 | (1) |
|
9.8.2 Quantitative evaluation |
|
|
286 | (1) |
|
9.8.3 Causal Kullback-Leibler (CKL) |
|
|
287 | (2) |
|
|
289 | (1) |
|
|
289 | (1) |
|
|
290 | (1) |
|
|
290 | (3) |
|
III KNOWLEDGE ENGINEERING |
|
|
293 | (112) |
|
10 Knowledge Engineering with Bayesian Networks |
|
|
297 | (64) |
|
|
297 | (2) |
|
10.1.1 Bayesian network modeling tasks |
|
|
297 | (2) |
|
|
299 | (5) |
|
10.2.1 KEBN lifecycle model |
|
|
299 | (1) |
|
10.2.2 Prototyping and spiral KEBN |
|
|
300 | (2) |
|
10.2.3 Boneh's KEBN process |
|
|
302 | (1) |
|
10.2.4 Are BNs suitable for the domain problem? |
|
|
303 | (1) |
|
10.2.5 Process management |
|
|
303 | (1) |
|
10.3 Stage 1: BN structure |
|
|
304 | (20) |
|
|
305 | (1) |
|
10.3.1.1 Understanding the problem context |
|
|
305 | (1) |
|
|
305 | (1) |
|
|
306 | (1) |
|
|
306 | (1) |
|
10.3.2 Common modeling mistakes: nodes and values |
|
|
307 | (4) |
|
10.3.3 Causal relationships |
|
|
311 | (1) |
|
10.3.4 Dependence and independence relationships |
|
|
312 | (5) |
|
10.3.5 Other relationships |
|
|
317 | (1) |
|
10.3.5.1 Representing time |
|
|
318 | (1) |
|
10.3.6 Controlling the number of arcs |
|
|
319 | (1) |
|
10.3.7 Combining discrete and continuous variables |
|
|
320 | (1) |
|
10.3.8 Using other knowledge representations |
|
|
321 | (1) |
|
10.3.9 Common modeling mistakes: arcs |
|
|
321 | (2) |
|
10.3.10 Structure evaluation |
|
|
323 | (1) |
|
10.3.10.1 Elicitation review |
|
|
324 | (1) |
|
10.4 Stage 2: Probability parameters |
|
|
324 | (17) |
|
|
325 | (2) |
|
10.4.2 Probability elicitation for discrete variables |
|
|
327 | (3) |
|
10.4.3 Probability elicitation for continuous variables |
|
|
330 | (1) |
|
10.4.4 Support for probability elicitation |
|
|
330 | (2) |
|
|
332 | (2) |
|
10.4.6 Case-based evaluation |
|
|
334 | (1) |
|
10.4.6.1 Explanation methods |
|
|
334 | (1) |
|
10.4.7 Validation methods |
|
|
335 | (2) |
|
10.4.8 Sensitivity analysis |
|
|
337 | (1) |
|
10.4.8.1 Sensitivity to evidence |
|
|
337 | (2) |
|
10.4.8.2 Sensitivity to changes in parameters |
|
|
339 | (2) |
|
10.5 Stage 3: Decision structure |
|
|
341 | (1) |
|
10.6 Stage 4: Utilities (preferences) |
|
|
342 | (5) |
|
10.6.1 Sensitivity of decisions |
|
|
343 | (4) |
|
10.6.1.1 Disease treatment example |
|
|
347 | (1) |
|
10.7 Modeling example: missing car |
|
|
347 | (6) |
|
10.8 Incremental modeling |
|
|
353 | (1) |
|
10.8.1 Divide-and-conquer |
|
|
353 | (1) |
|
10.8.2 Top-down vs. Bottom-up |
|
|
354 | (1) |
|
|
354 | (3) |
|
10.9.1 Adapting parameters |
|
|
355 | (2) |
|
10.9.2 Structural adaptation |
|
|
357 | (1) |
|
|
357 | (1) |
|
10.11 Bibliographic notes |
|
|
357 | (1) |
|
|
358 | (3) |
|
|
361 | (44) |
|
|
361 | (1) |
|
11.2 Bayesian poker revisited |
|
|
361 | (8) |
|
11.2.1 The initial prototype |
|
|
361 | (2) |
|
11.2.2 Developments 1995-2000 |
|
|
363 | (1) |
|
11.2.3 Adaptation to Texas Hold 'em, 2003 |
|
|
363 | (2) |
|
11.2.4 Hybrid model, 2003 |
|
|
365 | (3) |
|
11.2.5 Improved opponent modeling 2005-2007 |
|
|
368 | (1) |
|
11.2.6 Ongoing Bayesian poker |
|
|
368 | (1) |
|
|
368 | (1) |
|
11.3 An intelligent tutoring system for decimal understanding |
|
|
369 | (15) |
|
|
370 | (1) |
|
11.3.2 ITS system architecture |
|
|
371 | (2) |
|
11.3.3 Expert elicitation |
|
|
373 | (1) |
|
|
374 | (1) |
|
|
374 | (2) |
|
|
376 | (1) |
|
11.3.3.4 The evaluation process |
|
|
377 | (1) |
|
11.3.3.5 Empirical evaluation |
|
|
378 | (2) |
|
|
380 | (1) |
|
|
380 | (1) |
|
|
381 | (1) |
|
|
381 | (1) |
|
11.3.5 Field trial evaluation |
|
|
382 | (1) |
|
|
383 | (1) |
|
11.4 Goulburn Catchment Ecological Risk Assessment |
|
|
384 | (10) |
|
11.4.1 Conceptual modeling |
|
|
384 | (1) |
|
11.4.2 The KEBN process used for parameterization |
|
|
385 | (1) |
|
11.4.3 Parameter estimation |
|
|
386 | (3) |
|
11.4.4 Quantitative evaluation |
|
|
389 | (1) |
|
11.4.4.1 Evaluation by domain expert |
|
|
389 | (1) |
|
11.4.4.2 Sensitivity to findings analysis |
|
|
390 | (1) |
|
11.4.4.3 Sensitivity to parameters analysis |
|
|
391 | (2) |
|
|
393 | (1) |
|
|
394 | (1) |
|
11.5 Cardiovascular risk assessment |
|
|
394 | (9) |
|
|
394 | (2) |
|
11.5.1.1 Experimental methodology |
|
|
396 | (1) |
|
|
397 | (1) |
|
11.5.2 The clinical support tool: TakeHeart II |
|
|
398 | (4) |
|
|
402 | (1) |
|
|
403 | (2) |
|
|
405 | (4) |
|
|
409 | (8) |
|
|
409 | (2) |
|
|
411 | (1) |
|
B.3 BN Software Package Survey |
|
|
412 | (5) |
Bibliography |
|
417 | (36) |
Index |
|
453 | |