Muutke küpsiste eelistusi

Bayesian Computational Methods in Statistical Signal Processing [Kõva köide]

  • Formaat: Hardback, 400 pages, kõrgus x laius: 235x156 mm, 100 Illustrations, black and white
  • Sari: Chapman & Hall/CRC Interdisciplinary Statistics
  • Ilmumisaeg: 01-Jan-2021
  • Kirjastus: CRC Press Inc
  • ISBN-10: 1466590211
  • ISBN-13: 9781466590212
Bayesian Computational Methods in Statistical Signal Processing
  • Formaat: Hardback, 400 pages, kõrgus x laius: 235x156 mm, 100 Illustrations, black and white
  • Sari: Chapman & Hall/CRC Interdisciplinary Statistics
  • Ilmumisaeg: 01-Jan-2021
  • Kirjastus: CRC Press Inc
  • ISBN-10: 1466590211
  • ISBN-13: 9781466590212

The importance of Bayesian signal processing methods have grown over the past decade. A wealth of Bayesian tools are available for solving highly complex inference problems, including particle filters, Markov chain Monte Carlo, and variational Bayes. These methods can be utilized to solve some of the area's major challenges, from state and parameter estimation to decision/control. This book provides full coverage of the background material, including models, inference methods and case studies/examples in an accessible but not overly mathematical style.

Introduction. Fundamentals. Models. Deterministic inference methods. Monte Carlo methods. Sequential methods and particle filters. Emerging/advanced areas. Conclusions.

Simon John Godsill, PH.D., is a professor of statistical signal processing in the Engineering Department at the University of Cambridge, UK. Pete Bunch is a Ph.D. student at the University of Cambridge.