Muutke küpsiste eelistusi

Bayesian Statistics 7: Proceedings of the Seventh Valencia International Meeting [Kõva köide]

Edited by (, Departamento de Estadística, Universidad de Valencia Facultad de Matemáticas 46100--Burjassot, Valencia, SPAIN), Edited by , Edited by , Edited by , Edited by , Edited by (, Institute of Statistics and ), Edited by (, Department of Statistical Science, University College London, Gower Street, London)
  • Formaat: Hardback, 764 pages, kõrgus x laius x paksus: 242x166x44 mm, kaal: 1188 g, numerous figures
  • Ilmumisaeg: 03-Jul-2003
  • Kirjastus: Oxford University Press
  • ISBN-10: 0198526156
  • ISBN-13: 9780198526155
Teised raamatud teemal:
  • Formaat: Hardback, 764 pages, kõrgus x laius x paksus: 242x166x44 mm, kaal: 1188 g, numerous figures
  • Ilmumisaeg: 03-Jul-2003
  • Kirjastus: Oxford University Press
  • ISBN-10: 0198526156
  • ISBN-13: 9780198526155
Teised raamatud teemal:
Containing 23 invited and 31 contributed papers, this volume presents the proceedings of the June, 2002 meeting devoted to theoretical and applied research in Bayesian statistics. Papers look at such topics as exchangeability, problems in nonparametric Bayesian inference, problems of point estimation in invariant fashion, and approaches to inverse problems. The growing interest in causal inference is represented by three papers and a number of other papers treat various aspect of temporal and spatial modeling and analysis. Several papers are motivated by problems in genetic microarray technology. Annotation (c) Book News, Inc., Portland, OR (booknews.com)

The Valencia International Meetings on Bayesian Statistics, held every four years, provide the main forum for researchers in the area of Bayesian Statistics to come together to present and discus frontier developments in the field. The resulting proceedings provide a definitive, up-to-date overview encompassing a wide range of theoretical and applied research. This Seventh Proceedings containing 23 invited articles and 30 contributed papers is no exception and will be an indispensable reference to all statisticians.

Arvustused

... this book presents a uniquely excellent overview of some of the most relevant and pressing current issues underlying research in Bayesian statistics today. That such a definitive and all-encompassing presentation of a wide range of current concerns is fused in a single volume is by any measure its primary attraction. The format has additional appeal given the conference organizers' well-judged decision to encourage contributed discussion for the invited papers. This is particularly useful in bringing the most salient points to the forefront of the readers' attention. * Journal of the Royal Statistical Society * This volume will be of most use for the research-orientated investigator, or for a casual reader of Bayesian literature, both as stimulating to read and as a useful reference text. * Journal of the Royal Statistical Society * ... this collection provides an excellent overview of current research in Bayesian statistics ... Given the high quality of most papers in this volume, and the range of interesting applications, this is a must for academic libraries. I would advise researchers in Statistics, OR, and related fields to have a look at the volume, as it provides a fast overview of recent developments in Bayesian statistics. Some of the applications might also provide useful examples for teaching statistics at the postgraduate level. * Journal of the Operational Research Society *

I. INVITED PAPERS (with discussion)
Bayesian Inference for Elliptical Linear Models: Conjugate Analysis and Model Comparison
3(22)
Arellano-Valle R. B.
Iglesias, P. L.
Vidal I.
Hierarchical Bayesian Models for Applications in Information Retrieval
25(20)
Blei, D. M.
Jordan, M. I.
Ng, A. Y.
Hierarchical Multivariate CAR Models for Spatio-Temporally Correlated Survival Data
45(20)
Carlin, B. P.
Banerjee, S.
On Inferring Effects of Binary Treatments with Unobserved Confounders
65(20)
Chib, S.
Bayesian Treed Generalized Linear Models
85(20)
Chipman, H. A.
George, E. I.
McCulloch, R. E.
Bayesian Harmonic Models for Musical Signal Analysis
105(20)
Davy, M.
Godsill, S. J.
Assessing the Risk of Disclosure of Confidential Categorical Data
125(20)
Dobra, A.
Fienberg, S. E.
Trottini, M.
Bayesian and Frequentist Multiple Testing
145(18)
Genovese, C.
Wasserman, L.
Nonparametric Inference for Mixed Poisson Processes
163(18)
Gutierrez-Pena, E.
Nieto-Barajas, L.E.
Markov Chain Monte Carlo-based Approaches for Inference in Computationally Intensive Inverse Problems
181(18)
Higdon, D.
Lee, H.
Holloman, C.
A Hierarchical Model for Estimating the Reliability of Complex Systems
199(16)
Johnson, V. E.
Graves, T. L.
Hamada, M. S.
Shane Reese, C.
Rasch Models with Exchangeable Rows and Columns
215(18)
Lauritzen, S. L.
Discrimination Based on an Odds Ratio Parameterization
233(16)
van der Linde, A.
Osius, G.
Bayesian Clustering with Variable and Transformation Selections
249(28)
Liu, J. S.
Zhang, J. L.
Palumbo, M. J.
Lawrence, C. E.
IID Sampling using Self-Avoiding Population Monte Carlo: The Pinball Sampler
277(16)
Mengersen, K. L.
Robert, C. P.
A Statistical Approach to Modelling Genomic Aberrations in Cancer Cells
293(14)
Newton, M. A.
Yang H.
Gorman, P.
Tomlinson, I.
Roylance, R.
Non-Centered Parameterizations for Hierarchical Models and Data Augmentation
307(20)
Papaspiliopoulos, O.
Roberts, G. O.
Skold, M.
Identifying Mixtures of Regression Equations by the SAR procedure
327(22)
Pena, D.
Rodriguez, J.
Tiao, G. C.
Global Gambling
349(20)
Quintana, J. M.
Lourdes V.
Aguilar, O.
Liu, J.
New Tools for Consistency in Bayesian Nonparametrics
369(16)
Salinetti, G.
Measures of Incoherence: How not to Gamble if you Must
385(18)
Schervish, M. J.
Seidenfeld T.
Kadane, J. B.
A Nonparametric Bayesian Approach to Inverse Problems
403(16)
Wolpert, R. L.
Ickstadt, K.
Hansen, M. B.
A Novel Framework for Tracking Groups of Objects
419(24)
Zohar, R.
Geiger, D.
II. CONTRIBUTED PAPERS
Bayesian Modelling of Hospital Bed Occupancy Times using a Mixed Generalized Erlang Distribution
443(10)
Ausin, M. C.
Lillo, R. E.
Ruggeri, F.
Wiper, M. P.
The Variational Bayesian EM Algorithm for Incomplete Data: With Application to Scoring Graphical Model Structures
453(12)
Beal, M. J.
Ghahramani, Z.
Intrinsic Estimation
465(12)
Bernardo, J. M.
Juarez, M. A.
Robust Analysis of Salamander Data, Generalized Linear Model with Random Effects
477(8)
Choy, S. T. B.
Chan, J. S. K.
Yam, C. H. K.
A Relationship Between Randomized Manipulation and Parameter Independence
485(8)
Daneshkhah, A.
Smith, J. Q.
Markov Random Field Extensions using State Space Models
493(8)
Dethlefsen, C.
Bayesian Estimation of the Grade of Membership Model
501(10)
Erosheva, E. A.
A Variant Version of the Polya-Eggenberger Urn Model
511(8)
Esteves, L. G.
Wechsler, S.
Iglesias, P. L.
Pereira, A. L.
Multi-scale Modelling of I-D Permeability Fields
519(10)
Ferreira, M. A. R.
West, M.
Lee, H. K. H.
Higdon, D.
Bi, Z.
Direct Bayes for Interest Parameters
529(6)
Fraser, D. A. S.
Reid, N.
Wong, A.
Yi, G. Y.
Dynamic Lattice-Markov Spatio-Temporal Models for Environmental Data
535(8)
Garside, L. M.
Wilkinson, D. J.
Lymphoscintigraphy of Upper Limbs: A Bayesian Framework
543(10)
Gebousky, P.
Karny, M.
Quinn, A.
Bayesian Analysis of Matched Pairs in the Presence of Covariates
553(12)
Giron, F. J.
Martinez, M. L.
Moreno, E.
Torres, F.
State Space Models for Density Dependence in Population Ecology
565(12)
Jamieson, L. E.
Brooks, S. P.
A Marginal Ergodic Theorem
577(10)
Lavine, M.
Exact Bayesian Inference for a Class of Nonlinear Systems with Application to Robotic Assembly
587(10)
Lefebvre, T.
Gadeyne, K.
Bruyninckx, H.
De Schutter, J.
Compatible Priors for Causal Bayesian Networks
597(10)
Leucari, V.
Consonni, G.
On the Application of Logistic Regression Modelling in Microarray Studies
607(12)
Mertens, B. J. A.
Density Modelling and Clustering Using Dirichlet Diffusion Trees
619(12)
Neal, R. M.
Outlier Robust Estimation of a Finite Population Total
631(10)
Pettit, L. I.
Sugden, R. A.
Bayesian Inference for Derivative Prices
641(10)
Polson, N. G.
Stroud, J. R.
Gaussian Processes to Speed up Hybrid Monte Carlo for Expensive Bayesian Integrals
651(10)
Rasmussen, C. E.
Objective Bayesian Comparison of Laplace Samples from Geophysical Data
661(10)
Rodriguez, A.
Alvarez, G.
Sanso, B.
The Markov Modulated Poisson Process and Markov Poisson Cascade with Applications to Web Traffic Modelling
671(10)
Scott, S. L.
Smyth, P.
Modelling Bivariate Extremes in a Region
681(10)
Smith, E. L.
Walshaw, D.
Bayesian Object Matching with Hierarchical Priors and Markov Chain Monte Carlo
691(10)
Tamminen, T.
Lampinen, J.
Expected Utility Estimation via Cross-Validation
701(10)
Vehtari, A.
Lampinen, J.
A Method for Sequential Optimization in Bayesian Analysis
711(10)
Virto, M.
Martin, J.
Rios Insua, D.
Moreno Diaz, A.
Modelling Gene Expression Data over Time: Curve Clustering with Informative Prior Distributions
721(12)
Wakefield, J. C.
Zhou, C.
Self, S. G.
Bayesian Factor Regression Models in the ``Large p. Small n'' Paradigm
733(10)
West, M.
A Bayesian Analysis of Smooth Transitions in Trend
743
Zheng, P.
Marriott, J. M.


Professor José M. Bernardo Professor of Statistics, Universidad de Valencia, Spain; A. Philip Dawid Professor of Statistics, University College London, UK AWARDS: 2002 DeGroot Prize for a Published Book in Statistical Science (Cowell et al.) 2001 Royal Statistical Society: Guy Medal in Silver 1978 Royal Statistical Society: Guy Medal in Bronze 1977 G. W. Snedecor Award for Best Publication in Biometry



; David Heckerman Senior Researcher, Microsoft AAAI Fellow, 2001 Association for Computing Machinery Doctoral Dissertation Award, 1991 ; Mike West The Arts & Sciences Professor of Statistics & Decision Sciences Institute of Statistics and Decision Sciences, Duke University ; James O. Berger Professor of Statistics, Duke University; Professor M.J. Bayarri Professor of Statistics, Universidad de Valencia, Spain; Professor Adrian F.M. Smith Principal, Queen Mary University of London