Muutke küpsiste eelistusi

Beyond Traditional Probabilistic Data Processing Techniques: Interval, Fuzzy etc. Methods and Their Applications 2020 ed. [Pehme köide]

Edited by , Edited by , Edited by , Edited by
  • Formaat: Paperback / softback, 649 pages, kõrgus x laius: 235x155 mm, kaal: 1003 g, 71 Illustrations, color; 71 Illustrations, black and white; XI, 649 p. 142 illus., 71 illus. in color., 1 Paperback / softback
  • Sari: Studies in Computational Intelligence 835
  • Ilmumisaeg: 26-Aug-2021
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 3030310434
  • ISBN-13: 9783030310431
Teised raamatud teemal:
  • Pehme köide
  • Hind: 141,35 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 166,29 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 649 pages, kõrgus x laius: 235x155 mm, kaal: 1003 g, 71 Illustrations, color; 71 Illustrations, black and white; XI, 649 p. 142 illus., 71 illus. in color., 1 Paperback / softback
  • Sari: Studies in Computational Intelligence 835
  • Ilmumisaeg: 26-Aug-2021
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 3030310434
  • ISBN-13: 9783030310431
Teised raamatud teemal:
Data processing has become essential to modern civilization. The original data for this processing comes from measurements or from experts, and both sources are subject to uncertainty. Traditionally, probabilistic methods have been used to process uncertainty. However, in many practical situations, we do not know the corresponding probabilities: in measurements, we often only know the upper bound on the measurement errors; this is known as interval uncertainty. In turn, expert estimates often include imprecise (fuzzy) words from natural language such as "small"; this is known as fuzzy uncertainty. 
In this book, leading specialists on interval, fuzzy, probabilistic uncertainty and their combination describe state-of-the-art developments in their research areas. Accordingly, the book offers a valuable guide for researchers and practitioners interested in data processing under uncertainty, and an introduction to the latest trends and techniques in this area, suitable for graduate students. 

Symmetries are Important.- Constructive Continuity of Increasing
Functions.- A Constructive Framework for Teaching Discrete Mathematics.-
Fuzzy Logic for Incidence Geometry.- Strengths of Fuzzy Techniques in Data
Science.- Impact of Time Delays on Networked Control of Autonomous Systems.-
Sets and Systems.- An Overview of Polynomially Computable Characteristics of
Special Interval Matrices.- Interval Regularization for Inaccurate Linear
Algebraic Equations.- Measurable Process Selection Theorem and Non-Autonomous
Inclusions.- Handling Uncertainty When Getting Contradictory Advice from
Experts.- Why Sparse?.- The Kreinovich Temporal Universe.- Integral
Transforms induced by Heaviside Perceptrons.