|
1 Introduction and Technical Preliminaries |
|
|
1 | (36) |
|
1.1 Historical Background |
|
|
1 | (4) |
|
1.2 Introduction to Lattices, Algebras and Intuitionistic Logics |
|
|
5 | (7) |
|
1.3 Introduction to First-Order Logic (FOL) |
|
|
12 | (4) |
|
1.3.1 Extensions of the FOL for Database Theory |
|
|
14 | (2) |
|
1.4 Basic Database Concepts |
|
|
16 | (6) |
|
1.4.1 Basic Theory about Database Observations: Idempotent Power-View Operator |
|
|
18 | (1) |
|
1.4.2 Introduction to Schema Mappings |
|
|
19 | (3) |
|
1.5 Basic Category Theory |
|
|
22 | (15) |
|
1.5.1 Categorial Symmetry |
|
|
30 | (3) |
|
|
33 | (4) |
|
2 Composition of Schema Mappings: Syntax and Semantics |
|
|
37 | (58) |
|
2.1 Schema Mappings: Second-Order tgds (SOtgds) |
|
|
37 | (6) |
|
2.2 Transformation of Schema Integrity Constraints into SOtgds |
|
|
43 | (5) |
|
2.2.1 Transformation of Tuple-Generating Constraints into SOtgds |
|
|
44 | (2) |
|
2.2.2 Transformation of Equality-Generating Constraints into SOtgds |
|
|
46 | (2) |
|
2.3 New Algorithm for General Composition of SOtgds |
|
|
48 | (8) |
|
2.3.1 Categorial Properties for the Schema Mappings |
|
|
54 | (2) |
|
2.4 Logic versus Algebra: Categorification by Operads |
|
|
56 | (27) |
|
2.4.1 R-Algebras, Tarski's Interpretations and Instance-Database Mappings |
|
|
65 | (10) |
|
2.4.2 Query-Answering Abstract Data-Object Types and Operads |
|
|
75 | (2) |
|
2.4.3 Strict Semantics of Schema Mappings: Information Fluxes |
|
|
77 | (6) |
|
2.5 Algorithm for Decomposition of SOtgds |
|
|
83 | (6) |
|
2.6 Database Schema Mapping Graphs |
|
|
89 | (2) |
|
|
91 | (4) |
|
|
93 | (2) |
|
3 Definition of DB Category |
|
|
95 | (74) |
|
3.1 Why Do We Need a New Base Database Category? |
|
|
95 | (9) |
|
3.1.1 Introduction to Sketch Data Models |
|
|
100 | (2) |
|
3.1.2 Atomic Sketch's Database Mappings |
|
|
102 | (2) |
|
3.2 DB (Database) Category |
|
|
104 | (51) |
|
3.2.1 Power-View Endofunctor and Monad T |
|
|
133 | (5) |
|
|
138 | (3) |
|
|
141 | (6) |
|
|
147 | (4) |
|
3.2.5 Partial Ordering for Databases: Top and Bottom Objects |
|
|
151 | (4) |
|
3.3 Basic Operations for Objects in DB |
|
|
155 | (4) |
|
3.3.1 Data Federation Operator in DB |
|
|
155 | (1) |
|
3.3.2 Data Separation Operator in DB |
|
|
156 | (3) |
|
3.4 Equivalence Relations in DB Category |
|
|
159 | (6) |
|
3.4.1 The (Strong) Behavioral Equivalence for Databases |
|
|
160 | (1) |
|
3.4.2 Weak Observational Equivalence for Databases |
|
|
161 | (4) |
|
|
165 | (4) |
|
|
167 | (2) |
|
4 Functorial Semantics for Database Schema Mappings |
|
|
169 | (34) |
|
4.1 Theory: Categorial Semantics of Database Schema Mappings |
|
|
169 | (8) |
|
4.1.1 Categorial Semantics of Database Schemas |
|
|
170 | (3) |
|
4.1.2 Categorial Semantics of a Database Mapping System |
|
|
173 | (1) |
|
4.1.3 Models of a Database Mapping System |
|
|
174 | (3) |
|
4.2 Application: Categorial Semantics for Data Integration/Exchange |
|
|
177 | (22) |
|
4.2.1 Data Integration/Exchange Framework |
|
|
178 | (1) |
|
4.2.2 GLAV Categorial Semantics |
|
|
179 | (4) |
|
4.2.3 Query Rewriting in GAV with (Foreign) Key Constraints |
|
|
183 | (10) |
|
4.2.4 Fixpoint Operator for Finite Canonical Solution |
|
|
193 | (6) |
|
|
199 | (4) |
|
|
200 | (3) |
|
5 Extensions of Relational Codd's Algebra and DB Category |
|
|
203 | (48) |
|
5.1 Introduction to Codd's Relational Algebra and Its Extensions |
|
|
203 | (12) |
|
5.1.1 Initial Algebras and Syntax Monads: Power-View Operator |
|
|
209 | (6) |
|
5.2 Action-Relational-Algebra RA Category |
|
|
215 | (21) |
|
5.2.1 Normalization of Terms: Completeness of RA |
|
|
220 | (6) |
|
5.2.2 RA versus DB Category |
|
|
226 | (10) |
|
5.3 Relational Algebra and Database Schema Mappings |
|
|
236 | (2) |
|
5.4 DB Category and Relational Algebras |
|
|
238 | (9) |
|
|
247 | (4) |
|
|
249 | (2) |
|
6 Categorial RDB Machines |
|
|
251 | (46) |
|
6.1 Relational Algebra Programs and Computation Systems |
|
|
251 | (11) |
|
6.1.1 Major DBMS Components |
|
|
257 | (5) |
|
6.2 The Categorial RBD Machine |
|
|
262 | (22) |
|
6.2.1 The Categorial Approach to SQL Embedding |
|
|
271 | (6) |
|
6.2.2 The Categorial Approach to the Transaction Recovery |
|
|
277 | (7) |
|
6.3 The Concurrent-Categorial RBD Machine |
|
|
284 | (10) |
|
6.3.1 Time-Shared DBMS Components |
|
|
289 | (2) |
|
6.3.2 The Concurrent Categorial Transaction Recovery |
|
|
291 | (3) |
|
|
294 | (3) |
|
|
296 | (1) |
|
7 Operational Semantics for Database Mappings |
|
|
297 | (76) |
|
7.1 Introduction to Semantics of Process-Programming Languages |
|
|
297 | (3) |
|
7.2 Updates Through Views |
|
|
300 | (9) |
|
7.2.1 Deletion by Minimal Side-Effects |
|
|
302 | (3) |
|
7.2.2 Insertion by Minimal Side-Effects |
|
|
305 | (4) |
|
7.3 Denotational Model (Database-Mapping Process) Algebra |
|
|
309 | (24) |
|
7.3.1 Initial Algebra Semantics for Database-Mapping Programs |
|
|
314 | (3) |
|
7.3.2 Database-Mapping Processes and DB-Denotational Semantics |
|
|
317 | (16) |
|
7.4 Operational Semantics for Database-Mapping Programs |
|
|
333 | (8) |
|
7.4.1 Observational Comonad |
|
|
338 | (2) |
|
7.4.2 Duality and Database-Mapping Programs: Specification Versus Solution |
|
|
340 | (1) |
|
7.5 Semantic Adequateness for the Operational Behavior |
|
|
341 | (25) |
|
7.5.1 DB-Mappings Denotational Semantics and Structural Operational Semantics |
|
|
348 | (11) |
|
7.5.2 Generalized Coinduction |
|
|
359 | (7) |
|
|
366 | (7) |
|
|
369 | (4) |
|
8 The Properties of DB Category |
|
|
373 | (82) |
|
8.1 Expressive Power of the DB Category |
|
|
373 | (39) |
|
8.1.1 Matching Tensor Product |
|
|
377 | (4) |
|
|
381 | (2) |
|
8.1.3 (Co)Limits and Exponentiation |
|
|
383 | (9) |
|
8.1.4 Universal Algebra Considerations |
|
|
392 | (6) |
|
8.1.5 Algebraic Database Lattice |
|
|
398 | (14) |
|
|
412 | (10) |
|
8.2.1 DB Is a V-Category Enriched over Itself |
|
|
414 | (6) |
|
8.2.2 Internalized Yoneda Embedding |
|
|
420 | (2) |
|
8.3 Database Mappings and (Co)monads: (Co)induction |
|
|
422 | (23) |
|
8.3.1 DB Inductive Principle and DB Objects |
|
|
426 | (10) |
|
8.3.2 DB Coinductive Principle and DB Morphisms |
|
|
436 | (9) |
|
8.4 Kleisli Semantics for Database Mappings |
|
|
445 | (5) |
|
|
450 | (5) |
|
|
453 | (2) |
|
|
455 | (60) |
|
9.1 Topological Properties |
|
|
455 | (14) |
|
9.1.1 Database Metric Space |
|
|
456 | (3) |
|
9.1.2 Subobject Classifier |
|
|
459 | (4) |
|
9.1.3 Weak Monoidal Topos |
|
|
463 | (6) |
|
9.2 Intuitionistic Logic and DB Weak Monoidal Topos |
|
|
469 | (40) |
|
9.2.1 Birkhoff Polarity over Complete Lattices |
|
|
472 | (7) |
|
9.2.2 DB-Truth-Value Algebra and Birkhoff Polarity |
|
|
479 | (11) |
|
9.2.3 Embedding of WMTL (Weak Monoidal Topos Logic) into Intuitionistic Bimodal Logics |
|
|
490 | (8) |
|
9.2.4 Weak Monoidal Topos and Intuitionism |
|
|
498 | (11) |
|
|
509 | (6) |
|
|
512 | (3) |
Index |
|
515 | |