Muutke küpsiste eelistusi

Binding Energy of Strongly Deformed Radionuclides: Penning-Trap Mass Spectrometry and Mean-Field Theoretical Studies 1st ed. 2015 [Kõva köide]

  • Formaat: Hardback, 121 pages, kõrgus x laius: 235x155 mm, kaal: 3554 g, 8 Illustrations, color; 25 Illustrations, black and white; XXIX, 121 p. 33 illus., 8 illus. in color., 1 Hardback
  • Sari: Springer Theses
  • Ilmumisaeg: 18-Aug-2015
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319204084
  • ISBN-13: 9783319204086
  • Kõva köide
  • Hind: 95,02 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 111,79 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 121 pages, kõrgus x laius: 235x155 mm, kaal: 3554 g, 8 Illustrations, color; 25 Illustrations, black and white; XXIX, 121 p. 33 illus., 8 illus. in color., 1 Hardback
  • Sari: Springer Theses
  • Ilmumisaeg: 18-Aug-2015
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319204084
  • ISBN-13: 9783319204086
This thesis reports results of precision mass spectrometry of exotic nuclides as a means of elucidating their structure. The work was performed with the ISOLTRAP spectrometer at CERN’s ISOLDE facility. The author furthermore offers an overview of existing techniques used in Penning-trap mass spectrometry and also reports on recent promising developments regarding ISOLTRAP. This eloquently written treatment covers both theory and experiment, and includes a general phenomenological introduction to the nuclear-structure intuition contained in the trends of nuclear binding energies.
1 Nuclear Observables
1(20)
1.1 Trends of Binding Energies
1(3)
1.2 Mass Filters
4(12)
1.2.1 Estimators of the Single-Particle Energies
4(7)
1.2.2 Estimators of the Odd-Even Staggering
11(2)
1.2.3 Residual Effects
13(3)
1.3 Complementary Nuclear Data
16(5)
References
19(2)
2 Experimental Method and Data Analysis
21(40)
2.1 Charged-Particle Traps
21(1)
2.2 Penning Trap
22(9)
2.2.1 Dynamics of a Trapped Ion
22(3)
2.2.2 Driving the Ion's Motion
25(2)
2.2.3 Detecting the Ion's Motion
27(4)
2.3 From Cyclotron Frequency to Mass: Procedure, Precision, Systematic Errors
31(5)
2.4 Production and Preparation of the Ion Ensemble
36(8)
2.5 Complementary Applications of the MR-TOF MS
44(3)
2.6 Experimental Results
47(14)
2.6.1 Neutron-Rich Rubidium Isotopes
47(5)
2.6.2 Neutron-Deficient Gold Isotopes
52(5)
References
57(4)
3 Nuclear-Theory Concepts
61(22)
3.1 Many-Body Calculations
61(2)
3.2 The Hartree-Fock-Bogoliubov Approach
63(6)
3.2.1 Hartree-Fock Field
63(3)
3.2.2 Pairing Field
66(3)
3.3 Competition Between Particle-Particle and Particle-Hole Correlations in Nuclei
69(2)
3.4 Theoretical Analysis of the Measured Nuclear Data
71(12)
3.4.1 Aim
71(2)
3.4.2 HFODD Code
73(2)
3.4.3 Tests of the Method
75(5)
References
80(3)
4 Self-consistent Mean-Field Calculations
83(26)
4.1 Neutron-Rich A 100 Nuclei
83(9)
4.2 Neutron-Deficient Gold-Thallium Nuclei
92(7)
4.3 Odd-Even Staggering of Mercury Isotopes
99(4)
4.4 Summary
103(6)
References
107(2)
5 Conclusions and Outlook
109(4)
References
112(1)
Appendix A Finite-Difference Operators 113(4)
Appendix B Motion of a Charged Particle in a Penning Trap 117
Vladimir Manea received his physics bachelor degree from the University of Bucharest in 2010. He then followed the master courses of Université Paris-Sud in Orsay, from which in 2011 he received a three-year PhD scholarship to work on mass spectrometry in the nuclear-structure group of Centre de Sciences Nucléaires et de Sciences de la Matière, Orsay. His PhD research took place at CERN in the ISOLDE laboratory, where he performed Penning-trap mass spectrometry of radioactive nuclides with the ISOLTRAP setup. Since his PhD graduation in 2014 he continues at ISOLTRAP as a postdoc of the Max Planck Institute for Nuclear Physics, Heidelberg.