Muutke küpsiste eelistusi

Bio-inspired Networking [Kõva köide]

(Research engineer, Telecom ParisTech, France)
  • Formaat: Hardback, 144 pages, kõrgus x laius: 229x152 mm, kaal: 370 g
  • Ilmumisaeg: 19-Aug-2015
  • Kirjastus: ISTE Press Ltd - Elsevier Inc
  • ISBN-10: 1785480219
  • ISBN-13: 9781785480218
Teised raamatud teemal:
  • Kõva köide
  • Hind: 108,54 €*
  • * saadame teile pakkumise kasutatud raamatule, mille hind võib erineda kodulehel olevast hinnast
  • See raamat on trükist otsas, kuid me saadame teile pakkumise kasutatud raamatule.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Lisa soovinimekirja
  • Formaat: Hardback, 144 pages, kõrgus x laius: 229x152 mm, kaal: 370 g
  • Ilmumisaeg: 19-Aug-2015
  • Kirjastus: ISTE Press Ltd - Elsevier Inc
  • ISBN-10: 1785480219
  • ISBN-13: 9781785480218
Teised raamatud teemal:
Bio-inspired techniques are based on principles, or models, of biological systems. In general, natural systems present remarkable capabilities of resilience and adaptability. In this book, we explore how bio-inspired methods can solve different problems linked to computer networks.

Future networks are expected to be autonomous, scalable and adaptive. During millions of years of evolution, nature has developed a number of different systems that present these and other characteristics required for the next generation networks. Indeed, a series of bio-inspired methods have been successfully used to solve the most diverse problems linked to computer networks. This book presents some of these techniques from a theoretical and practical point of view.
  • Discusses the key concepts of bio-inspired networking to aid you in finding efficient networking solutions
  • Delivers examples of techniques both in theoretical concepts and practical applications
  • Helps you apply nature's dynamic resource and task management to your computer networks

Muu info

Learn bio-inspired networking techniques from a theoretical and practical point of view
Introduction vii
Chapter 1 Evolution and Evolutionary Algorithms
1(30)
1.1 Brief introduction to evolution
2(4)
1.2 Mechanisms of evolution
6(3)
1.2.1 DNA code
6(1)
1.2.2 Mutation
6(1)
1.2.3 Sexual reproduction and recombination
7(1)
1.2.4 Natural selection
8(1)
1.2.5 Genetic drift
9(1)
1.3 Artificial evolution
9(4)
1.3.1 The basic process
10(2)
1.3.2 Limitations
12(1)
1.4 Applications on networks
13(12)
1.4.1 Network positioning
13(6)
1.4.2 Routing
19(6)
1.4.3 Other works
25(1)
1.5 Further reading
25(2)
1.6 Bibliography
27(4)
Chapter 2 Chemical Computing
31(14)
2.1 Artificial chemistry
34(2)
2.2 Applications on networks
36(5)
2.2.1 Data dissemination
36(2)
2.2.2 Routing
38(3)
2.3 Further reading
41(1)
2.4 Bibliography
42(3)
Chapter 3 Nervous System
45(36)
3.1 Nervous system hierarchy
46(3)
3.1.1 Central nervous system
47(1)
3.1.2 Peripheral nervous system
47(2)
3.2 The neuron
49(2)
3.3 The neocortex
51(3)
3.4 Speed and capacity
54(2)
3.5 Artificial neural networks
56(10)
3.5.1 The perceptron
57(2)
3.5.2 Interconnecting perceptrons
59(3)
3.5.3 Learning process
62(1)
3.5.4 The backpropagation algorithm
63(3)
3.6 Applications on networks
66(8)
3.6.1 ANN in intrusion detection systems
67(2)
3.6.2 Fault detection
69(2)
3.6.3 Routing
71(3)
3.7 Further reading
74(1)
3.8 Bibliography
75(6)
Chapter 4 Swarm Intelligence (SI)
81(22)
4.1 Ant colony optimization
86(1)
4.2 Applications on networks
87(6)
4.2.1 Ants colony on routing
87(3)
4.2.2 Ants colony on intrusion detection
90(3)
4.3 Particle swarm optimization
93(2)
4.4 Applications on networks
95(3)
4.4.1 Particle swarm on node positioning
95(1)
4.4.2 Particle swarm on intrusion detection
96(2)
4.5 Further reading
98(1)
4.6 Bibliography
99(4)
Glossary 103(4)
Index 107
Daniel Câmara is a Research Engineer at Telecom ParisTech, in France, currently working in the System on Chip Laboratory (LABSOC). His research interestsinclude wireless networks, distributed systems, quality of software and artificial intelligence algorithms.