Muutke küpsiste eelistusi

Bioinformatics for DNA Sequence Analysis Softcover reprint of hardcover 1st ed. 2009 [Pehme köide]

Edited by
  • Formaat: Paperback / softback, 354 pages, kõrgus x laius: 260x193 mm, kaal: 906 g, 151 Illustrations, black and white; XIV, 354 p. 151 illus., 1 Paperback / softback
  • Sari: Methods in Molecular Biology 537
  • Ilmumisaeg: 19-Nov-2010
  • Kirjastus: Humana Press Inc.
  • ISBN-10: 1617378399
  • ISBN-13: 9781617378393
Teised raamatud teemal:
  • Pehme köide
  • Hind: 95,02 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 111,79 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 354 pages, kõrgus x laius: 260x193 mm, kaal: 906 g, 151 Illustrations, black and white; XIV, 354 p. 151 illus., 1 Paperback / softback
  • Sari: Methods in Molecular Biology 537
  • Ilmumisaeg: 19-Nov-2010
  • Kirjastus: Humana Press Inc.
  • ISBN-10: 1617378399
  • ISBN-13: 9781617378393
Teised raamatud teemal:

In Bioinformatics for DNA Sequence Analysis, experts provide practical guidance and troubleshooting advice for the computational analysis of DNA sequences, covering a range of issues and methods that demonstrate the vital relevance bioinformatics has today.



The recent accumulation of information from genomes, including their sequences, has resultednotonlyinnewattemptstoansweroldquestionsandsolvelongstandingissues inbiology,butalsointheformulationofnovelhypothesesthatarisepreciselyfromthis wealth of data. The storage, processing, description, transmission, connection, and analysis of these data has prompted bioinformatics to become one the most relevant applied sciences for this new century, walking hand-in-hand with modern molecular biology and clearly impacting areas like biotechnology and biomedicine. Bioinformatics skills have now become essential for many scientists working with DNA sequences. With this idea in mind, this book aims to provide practical guidance andtroubleshootingadviceforthecomputationalanalysisofDNAsequences,covering a range of issues and methods that unveil the multitude of applications and relevance that Bioinformatics has today. The analysis of protein sequences has been purposely excludedtogainfocus.Individualbookchaptersareorientedtowardthedescriptionof theuseofspecificbioinformaticstools,accompaniedbypracticalexamples,adiscussion on the interpretation of results, and specific comments on strengths and limitations of the methods and tools. In a sense, chapters could be seen as enriched task-oriented manuals that will direct the reader in completing specific bioinformatics analyses. The target audience for this book is biochemists, and molecular and evolutionary biologiststhatwanttolearnhowtoanalyzeDNAsequencesinasimplebutmeaningful fashion. Readers do not need a special background in statistics, mathematics, or computer science, just a basic knowledge of molecular biology and genetics. All the tools described in the book are free and all of them can be downloaded or accessed throughtheweb.Mostchapterscouldbeusedforpracticaladvancedundergraduateor graduate-level courses in bioinformatics and molecular evolution.
Similarity Searching Using BLAST.- Gene Orthology Assessment with OrthologID.- Multiple Alignment of DNA Sequences with MAFFT.- SeqVis: A Tool for Detecting Compositional Heterogeneity Among Aligned Nucleotide Sequences.- Selection of Models of DNA Evolution with jModelTest.- Estimating Maximum Likelihood Phylogenies with PhyML.- Trees from Trees: Construction of Phylogenetic Supertrees Using Clann.- Detecting Signatures of Selection from DNA Sequences Using Datamonkey.- Recombination Detection and Analysis Using RDP3.- CodonExplorer: An Interactive Online Database for the Analysis of Codon Usage and Sequence Composition.- Genetic Code Prediction for Metazoan Mitochondria with GenDecoder.- Computational Gene Annotation in New Genome Assemblies Using GeneID.- Promoter Analysis: Gene Regulatory Motif Identification with A-GLAM.- Analysis of Genomic DNA with the UCSC Genome Browser.- Mining for SNPs and SSRs Using SNPServer, dbSNP and SSR Taxonomy Tree.- Analysis of Transposable Element Sequences Using CENSOR and RepeatMasker.- DNA Sequence Polymorphism Analysis Using DnaSP.