Preface |
|
xv | |
|
Chapter 1 Introduction and Biological Background |
|
|
1 | (38) |
|
1.1 Biological Computation |
|
|
1 | (3) |
|
1.2 The Influence Of Biology On Mathematics---Historical Examples |
|
|
4 | (3) |
|
1.3 Biological Introduction |
|
|
7 | (19) |
|
1.3.1 The Cell and Its Activities |
|
|
12 | (2) |
|
1.3.2 The Structure of DNA |
|
|
14 | (2) |
|
|
16 | (2) |
|
1.3.4 Protein Synthesis and Gene Regulation |
|
|
18 | (5) |
|
1.3.5 Reproduction and Heredity |
|
|
23 | (3) |
|
1.4 Models And Simulations |
|
|
26 | (7) |
|
|
33 | (1) |
|
|
34 | (1) |
|
|
34 | (3) |
|
1.7.1 Biological Computation |
|
|
34 | (1) |
|
|
35 | (1) |
|
1.7.3 Biological Introduction |
|
|
35 | (2) |
|
1.7.4 Models and Simulations |
|
|
37 | (1) |
|
1.8 Answers To Selected Exercises |
|
|
37 | (2) |
|
Chapter 2 Cellular Automata |
|
|
39 | (48) |
|
2.1 Biological Background |
|
|
39 | (5) |
|
|
39 | (1) |
|
2.1.2 Genetic Inheritance---Downward and Sideways |
|
|
40 | (1) |
|
2.1.3 Diversity and the Species Question |
|
|
41 | (1) |
|
2.1.4 Bacteria and Humans |
|
|
42 | (1) |
|
2.1.5 The Sociobiology of Bacteria |
|
|
42 | (2) |
|
|
44 | (4) |
|
2.3 General Definition Of Cellular Automata |
|
|
48 | (2) |
|
2.4 1-Dimensional Automata |
|
|
50 | (4) |
|
2.5 Examples Of Cellular Automata |
|
|
54 | (5) |
|
|
54 | (3) |
|
|
57 | (1) |
|
|
58 | (1) |
|
2.6 Comparison With A Continuous Mathematical Model |
|
|
59 | (2) |
|
2.7 Computational Universality |
|
|
61 | (12) |
|
2.7.1 What Is Universality? |
|
|
61 | (4) |
|
2.7.2 Cellular Automata as a Computational Model |
|
|
65 | (2) |
|
2.7.3 How to Prove That a CA Is Universal |
|
|
67 | (1) |
|
2.7.4 Universality of a Two-Dimensional Cellular Automaton---Proof Sketch |
|
|
68 | (3) |
|
2.7.5 Universality of the "Game of Life"---Proof Sketch |
|
|
71 | (2) |
|
|
73 | (4) |
|
|
77 | (1) |
|
|
78 | (1) |
|
|
79 | (1) |
|
|
79 | (5) |
|
|
79 | (1) |
|
|
80 | (2) |
|
2.12.3 Computing Using Cellular Automata |
|
|
82 | (1) |
|
|
82 | (1) |
|
2.12.5 Programming Exercises |
|
|
83 | (1) |
|
2.13 Answers To Selected Exercises |
|
|
84 | (3) |
|
Chapter 3 Evolutionary Computation |
|
|
87 | (56) |
|
3.1 Evolutionary Biology And Evolutionary Computation |
|
|
87 | (7) |
|
|
87 | (6) |
|
3.1.2 Evolutionary Computation |
|
|
93 | (1) |
|
|
94 | (14) |
|
3.2.1 Selection and Fitness |
|
|
98 | (4) |
|
3.2.2 Variations on Fitness Functions |
|
|
102 | (2) |
|
3.2.3 Genetic Operators and the Representation of Solutions |
|
|
104 | (4) |
|
|
108 | (3) |
|
|
108 | (1) |
|
3.3.2 Engineering Optimization |
|
|
109 | (1) |
|
3.3.3 Pattern Recognition and Classification |
|
|
109 | (1) |
|
3.3.4 Designing Cellular Automata |
|
|
110 | (1) |
|
3.3.5 Designing Neural Networks |
|
|
110 | (1) |
|
|
110 | (1) |
|
3.4 Analysis Of The Behavior Of Genetic Algorithms |
|
|
111 | (8) |
|
3.4.1 Holland's Building Blocks Hypothesis |
|
|
115 | (1) |
|
|
116 | (2) |
|
3.4.3 Corollaries of the Schema Theorem |
|
|
118 | (1) |
|
|
119 | (2) |
|
|
121 | (5) |
|
3.7 A Second Look At The Evolutionary Process |
|
|
126 | (4) |
|
3.7.1 Mechanisms for the Generation and Inheritance of Variations |
|
|
126 | (3) |
|
|
129 | (1) |
|
|
130 | (1) |
|
|
131 | (1) |
|
|
132 | (1) |
|
|
132 | (8) |
|
3.11.1 Evolutionary Computation |
|
|
132 | (1) |
|
3.11.2 Genetic Algorithms |
|
|
133 | (1) |
|
3.11.3 Selection and Fitness |
|
|
133 | (1) |
|
3.11.4 Genetic Operators and the Representation of Solutions |
|
|
134 | (1) |
|
3.11.5 Analysis of the Behavior of Genetic Algorithms |
|
|
135 | (1) |
|
3.11.6 Genetic Programming |
|
|
136 | (1) |
|
3.11.7 Programming Exercises |
|
|
136 | (4) |
|
3.12 Answers To Selected Exercises |
|
|
140 | (3) |
|
Chapter 4 Artificial Neural Networks |
|
|
143 | (72) |
|
4.1 Biological Background |
|
|
143 | (3) |
|
4.1.1 Neural Networks as Computational Model |
|
|
146 | (1) |
|
|
146 | (2) |
|
4.3 Artificial Neural Networks |
|
|
148 | (4) |
|
4.3.1 General Structure of Artificial Neural Networks |
|
|
148 | (3) |
|
4.3.2 Training an Artificial Neural Network |
|
|
151 | (1) |
|
|
152 | (10) |
|
4.4.1 Definition of a Perceptron |
|
|
152 | (4) |
|
4.4.2 Formal Description of the Behavior of a Perceptron |
|
|
156 | (2) |
|
4.4.3 The Perceptron Learning Rule |
|
|
158 | (1) |
|
4.4.4 Proving the Convergence of the Perceptron Learning Algorithm |
|
|
159 | (3) |
|
4.5 Learning In A Multilayered Network |
|
|
162 | (18) |
|
4.5.1 The Backpropagation Algorithm |
|
|
162 | (8) |
|
4.5.2 Analysis of Learning Algorithms |
|
|
170 | (2) |
|
|
172 | (2) |
|
4.5.4 Examples of Applications |
|
|
174 | (6) |
|
|
180 | (14) |
|
|
180 | (1) |
|
|
181 | (1) |
|
4.6.3 Memorization in a Hopfield Network |
|
|
181 | (2) |
|
4.6.4 Data Retrieval in a Hopfield Network |
|
|
183 | (2) |
|
4.6.5 The Convergence of the Process of Updating the Neurons |
|
|
185 | (1) |
|
4.6.6 Analyzing the Capacity of a Hopfield Network |
|
|
186 | (3) |
|
4.6.7 Application of a Hopfield Network |
|
|
189 | (2) |
|
4.6.8 Further Uses of the Hopfield Network |
|
|
191 | (3) |
|
4.7 Unsupervised Learning |
|
|
194 | (6) |
|
4.7.1 Self-Organizing Maps |
|
|
195 | (3) |
|
4.7.2 WEBSOM: Example of Using SOMs for Document Text Mining |
|
|
198 | (2) |
|
|
200 | (1) |
|
|
201 | (1) |
|
|
202 | (8) |
|
4.10.1 Single-Layer Perceptrons |
|
|
202 | (1) |
|
4.10.2 Multilayer Networks |
|
|
203 | (2) |
|
|
205 | (3) |
|
4.10.4 Self-Organizing Maps |
|
|
208 | (1) |
|
|
208 | (2) |
|
4.11 Answers To Selected Exercises |
|
|
210 | (5) |
|
Chapter 5 Molecular Computation |
|
|
215 | (44) |
|
5.1 Biological Background |
|
|
217 | (3) |
|
5.1.1 PCR: Polymerase Chain Reaction |
|
|
217 | (2) |
|
5.1.2 Gel Electrophoresis |
|
|
219 | (1) |
|
5.1.3 Restriction Enzymes |
|
|
219 | (1) |
|
|
220 | (1) |
|
5.2 Computation Using Dna |
|
|
220 | (17) |
|
|
220 | (10) |
|
|
230 | (3) |
|
|
233 | (3) |
|
5.2.4 DNA Computing---Summary |
|
|
236 | (1) |
|
5.3 Enzymatic Computation |
|
|
237 | (11) |
|
|
238 | (4) |
|
5.3.2 Enzymatic Implementation of Finite Automata |
|
|
242 | (6) |
|
|
248 | (2) |
|
|
250 | (1) |
|
|
250 | (4) |
|
5.6.1 Biological Background |
|
|
250 | (1) |
|
|
250 | (3) |
|
5.6.3 Enzymatic Computation |
|
|
253 | (1) |
|
5.7 Answers To Selected Exercises |
|
|
254 | (5) |
|
Chapter 6 The Never-Ending Story: Additional Topics at the Interface between Biology and Computation |
|
|
259 | (52) |
|
|
261 | (9) |
|
6.1.1 Ant Colony Optimization Algorithms |
|
|
262 | (2) |
|
6.1.2 Cemetery Organization, Larval Sorting, and Clustering |
|
|
264 | (3) |
|
6.1.3 Particle Swarm Optimization |
|
|
267 | (3) |
|
6.2 Artificial Immune Systems |
|
|
270 | (3) |
|
6.2.1 Identifying Intrusions in a Computer Network |
|
|
271 | (2) |
|
|
273 | (11) |
|
|
276 | (5) |
|
6.3.2 Evolvable Virtual Creatures |
|
|
281 | (3) |
|
|
284 | (10) |
|
6.4.1 Evolution of Modularity |
|
|
287 | (2) |
|
6.4.2 Robustness of Biological Systems |
|
|
289 | (1) |
|
6.4.3 Formal Languages for Describing Biological Systems |
|
|
290 | (4) |
|
|
294 | (3) |
|
6.6 Recommendations For Additional Reading |
|
|
297 | (4) |
|
6.6.1 Biological Introduction |
|
|
297 | (1) |
|
6.6.2 Personal Perspectives |
|
|
298 | (1) |
|
6.6.3 Modeling Biological Systems |
|
|
298 | (1) |
|
6.6.4 Biological Computation |
|
|
299 | (1) |
|
|
299 | (1) |
|
6.6.6 Evolutionary Computation |
|
|
300 | (1) |
|
|
300 | (1) |
|
6.6.8 Molecular Computation |
|
|
300 | (1) |
|
|
300 | (1) |
|
|
301 | (1) |
|
|
301 | (1) |
|
|
301 | (1) |
|
|
302 | (5) |
|
|
302 | (1) |
|
6.8.2 Artificial Immune Systems |
|
|
303 | (2) |
|
|
305 | (1) |
|
|
306 | (1) |
|
6.8.5 Programming Exercises |
|
|
306 | (1) |
|
6.9 Answers To Selected Exercises |
|
|
307 | (4) |
Index |
|
311 | |