Muutke küpsiste eelistusi

Biologically Inspired Techniques in Many Criteria Decision-Making: Proceedings of BITMDM 2024 [Kõva köide]

Edited by , Edited by , Edited by , Edited by , Edited by
  • Formaat: Hardback, 479 pages, kõrgus x laius: 235x155 mm, 187 Illustrations, color; 36 Illustrations, black and white; XIV, 479 p. 223 illus., 187 illus. in color., 1 Hardback
  • Sari: Learning and Analytics in Intelligent Systems 45
  • Ilmumisaeg: 15-Mar-2025
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031827058
  • ISBN-13: 9783031827051
  • Kõva köide
  • Hind: 206,20 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 242,59 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 479 pages, kõrgus x laius: 235x155 mm, 187 Illustrations, color; 36 Illustrations, black and white; XIV, 479 p. 223 illus., 187 illus. in color., 1 Hardback
  • Sari: Learning and Analytics in Intelligent Systems 45
  • Ilmumisaeg: 15-Mar-2025
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031827058
  • ISBN-13: 9783031827051

This book includes selected high-quality research papers presented at 3rd International Conference on Biologically Inspired Techniques in Many Criteria Decision Making (BITMDM 2024) organized by School of Engineering and Technology, Nagaland University, Dimapur, India on 6th and 7th December 2024. This book presents the recent advances in techniques which are biologically inspired and their usage in the field of single and many criteria decision making. Further, the topics covered in this book are divided into different sections like: i) healthcare and biomedical applications, ii) security, fraud detection, and cybersecurity, iii) intelligent systems and decision support, iv) agriculture and environment, v) image processing and multi-media analysis, and vi) emerging technologies and applications.

.- Evaluating the top Machine Learning Classifiers Used in Diabetes Prediction.- A Machine Learning-Based Approach to Enhance Fraud Detection Using Decision Tree.- Oropharyngeal Cancer Detection with Machine Learning for Precision Diagnosis.- A Deep Learning Framework for Crime Detection.- Deep Learning and Bio-Inspired Algorithm Based Chat Bot, etc.