Preface |
|
xi | |
Acknowledgments |
|
xv | |
Author |
|
xvii | |
|
|
1 | (24) |
|
Typical measurement Systems |
|
|
1 | (5) |
|
|
2 | (1) |
|
Further Study: The Transducer |
|
|
3 | (1) |
|
|
4 | (2) |
|
Sources of Variability: Noise |
|
|
6 | (4) |
|
|
8 | (1) |
|
|
9 | (1) |
|
Analog Filters: Filter Basics |
|
|
10 | (4) |
|
|
10 | (1) |
|
|
11 | (1) |
|
|
12 | (1) |
|
|
12 | (2) |
|
Analog-to-Digital Conversion: Basic Concepts |
|
|
14 | (5) |
|
Analog-to-Digital Conversion Techniques |
|
|
15 | (1) |
|
|
16 | (1) |
|
Further Study: Successive Approximation Analog-to-Digital Conversion |
|
|
17 | (2) |
|
|
19 | (3) |
|
Further Study: Buffering and Real-Time Data Processing |
|
|
21 | (1) |
|
|
22 | (3) |
|
|
23 | (2) |
|
|
25 | (30) |
|
|
25 | (4) |
|
|
27 | (1) |
|
|
28 | (1) |
|
Data Functions and Transforms |
|
|
29 | (6) |
|
Comparing Waveforms: Vector Representation |
|
|
30 | (2) |
|
Signal Analysis: Transformation and Basis Functions |
|
|
32 | (3) |
|
Convolution, Correlation, and Covariance |
|
|
35 | (11) |
|
Convolution and the Impulse Response |
|
|
35 | (4) |
|
Covariance and Correlation |
|
|
39 | (1) |
|
Covariance, Correlation, and Autocorrelation Matrices |
|
|
40 | (2) |
|
|
42 | (4) |
|
Sampling Theory and Finite Data considerations |
|
|
46 | (9) |
|
|
51 | (2) |
|
|
53 | (2) |
|
Spectral Analysis: Classical Methods |
|
|
55 | (28) |
|
|
55 | (2) |
|
Fourier Transform: Fourier Series Analysis |
|
|
57 | (8) |
|
|
57 | (3) |
|
|
60 | (2) |
|
Discrete-Time Fourier Analysis |
|
|
62 | (3) |
|
|
65 | (2) |
|
|
66 | (1) |
|
MATLAB® Implementation: Direct FFT |
|
|
67 | (3) |
|
Truncated Fourier Analysis: Data Windowing |
|
|
70 | (3) |
|
MATLAB® Implementation: Window Functions |
|
|
73 | (2) |
|
|
75 | (3) |
|
MATLAB® Implementation: The Welch Method for Power Spectral Density Determination |
|
|
78 | (5) |
|
|
81 | (2) |
|
|
83 | (32) |
|
|
83 | (1) |
|
|
83 | (5) |
|
Digital Transfer Function |
|
|
84 | (2) |
|
|
86 | (2) |
|
Finite Impulse Response (FIR) Filters |
|
|
88 | (18) |
|
|
89 | (4) |
|
Derivative Operation: The Two-Point Central Difference Algorithm |
|
|
93 | (2) |
|
|
95 | (3) |
|
Filter Design and Application Using the MATLAB® Signal Processing Toolbox |
|
|
98 | (1) |
|
Single-Stage FIR Filter Design |
|
|
99 | (1) |
|
Two-Stage FIR Filter Design |
|
|
100 | (6) |
|
Infinite Impulse Response (IIR) Filters |
|
|
106 | (9) |
|
MATLAB® Implementation IIR Filters |
|
|
107 | (1) |
|
Single-Stage IIR Filter Design |
|
|
107 | (2) |
|
Two-Stage IIR Filter Design: Analog Style Filters |
|
|
109 | (2) |
|
|
111 | (4) |
|
Spectral Analysis: Modern Techniques |
|
|
115 | (24) |
|
|
115 | (12) |
|
|
120 | (2) |
|
|
122 | (5) |
|
Nonparametric Analysis: Eigenanalysis Frequency Estimation |
|
|
127 | (12) |
|
|
128 | (8) |
|
|
136 | (3) |
|
|
139 | (26) |
|
|
139 | (1) |
|
Short-Term Fourier Transform: The Spectrogram |
|
|
139 | (8) |
|
MATLAB® Implementation: The Short-Term Fourier Transform |
|
|
140 | (7) |
|
Wigner-Ville Distribution: A Special Case of Cohen's Class |
|
|
147 | (5) |
|
Instantaneous Autocorrelation Function |
|
|
147 | (5) |
|
Choi-Williams and Other Distributions |
|
|
152 | (2) |
|
|
153 | (1) |
|
|
154 | (11) |
|
Wigner-Ville Distribution |
|
|
154 | (3) |
|
Choi-Williams and Other Distributions |
|
|
157 | (6) |
|
|
163 | (2) |
|
|
165 | (30) |
|
|
165 | (2) |
|
Continuous Wavelet Transform |
|
|
167 | (7) |
|
Wavelet Time-Frequency Characteristics |
|
|
168 | (3) |
|
|
171 | (3) |
|
Discrete Wavelet Transform |
|
|
174 | (15) |
|
|
175 | (4) |
|
Relationship between Analytical Expressions and Filter Banks |
|
|
179 | (1) |
|
|
180 | (5) |
|
|
185 | (2) |
|
|
187 | (2) |
|
Feature Detection: Wavelet Packets |
|
|
189 | (6) |
|
|
193 | (2) |
|
Advanced Signal Processing Techniques: Optimal and Adaptive Filters |
|
|
195 | (28) |
|
Optimal Signal Processing: Wiener Filters |
|
|
195 | (7) |
|
|
198 | (4) |
|
Adaptive Signal Processing |
|
|
202 | (11) |
|
Adaptive Line Enhancement (ALE) and Adaptive Interference Suppression |
|
|
205 | (1) |
|
Adaptive Noise Cancellation (ANC) |
|
|
206 | (1) |
|
|
207 | (6) |
|
Phase-Sensitive Detectors |
|
|
213 | (10) |
|
|
213 | (2) |
|
Phase-Sensitive Detectors |
|
|
215 | (3) |
|
|
218 | (2) |
|
|
220 | (3) |
|
Multivariate Analyses: Principal Component Analysis and Independent Component Analysis |
|
|
223 | (24) |
|
Introduction: Linear Transformations |
|
|
223 | (3) |
|
Principal Component Analysis |
|
|
226 | (10) |
|
Determination of Principal Components Using Singular Value Decomposition |
|
|
229 | (1) |
|
Order Selection: The Scree Plot |
|
|
230 | (1) |
|
|
230 | (1) |
|
|
230 | (2) |
|
|
232 | (4) |
|
Independent Component Analysis |
|
|
236 | (11) |
|
|
241 | (4) |
|
|
245 | (2) |
|
Fundamentals of Image Processing: MATLAB® Image Processing Toolbox |
|
|
247 | (28) |
|
Image Processing Basics; MATLAB® Image Formats |
|
|
247 | (6) |
|
General Image Formats: Image Array Indexing |
|
|
247 | (1) |
|
Data Classes: Intensity Coding Schemes |
|
|
248 | (2) |
|
|
250 | (1) |
|
|
250 | (3) |
|
|
253 | (4) |
|
Image Storage and Retrieval |
|
|
257 | (1) |
|
Basic Arithmetic Operations |
|
|
258 | (6) |
|
Advanced Protocols: Block Processing |
|
|
264 | (11) |
|
Sliding Neighborhood Operations |
|
|
264 | (4) |
|
Distinct Block Operations |
|
|
268 | (4) |
|
|
272 | (3) |
|
Spectral Analysis: The Fourier Transform |
|
|
275 | (30) |
|
Two-Dimensional Fourier Transform |
|
|
275 | (4) |
|
|
276 | (3) |
|
|
279 | (7) |
|
|
280 | (1) |
|
|
281 | (5) |
|
|
286 | (10) |
|
|
288 | (1) |
|
|
288 | (2) |
|
General Affine Transformations |
|
|
290 | (2) |
|
Projective Transformations |
|
|
292 | (4) |
|
|
296 | (9) |
|
Unaided Image Registration |
|
|
297 | (3) |
|
Interactive Image Registration |
|
|
300 | (2) |
|
|
302 | (3) |
|
|
305 | (30) |
|
|
305 | (1) |
|
|
305 | (6) |
|
Threshold Level Adjustment |
|
|
306 | (3) |
|
|
309 | (2) |
|
|
311 | (6) |
|
|
312 | (5) |
|
|
317 | (2) |
|
|
319 | (7) |
|
|
321 | (5) |
|
|
326 | (9) |
|
|
327 | (1) |
|
|
328 | (4) |
|
|
332 | (3) |
|
|
335 | (26) |
|
|
335 | (11) |
|
|
335 | (4) |
|
|
339 | (2) |
|
|
341 | (1) |
|
|
342 | (1) |
|
|
342 | (1) |
|
Inverse Radon Transform: Parallel Beam Geometry |
|
|
342 | (2) |
|
Radon and Inverse Radon Transform: Fan Beam Geometry |
|
|
344 | (2) |
|
Magnetic Resonance Imaging |
|
|
346 | (5) |
|
|
346 | (3) |
|
Data Acquisition: Pulse Sequences |
|
|
349 | (2) |
|
|
351 | (10) |
|
|
352 | (2) |
|
Principal Component and Independent Component Analyses |
|
|
354 | (5) |
|
|
359 | (2) |
|
Classification I: Linear Discriminant Analysis and Support Vector Machines |
|
|
361 | (38) |
|
|
361 | (4) |
|
|
364 | (1) |
|
|
365 | (6) |
|
Evaluating Classifier Performance |
|
|
371 | (5) |
|
Higher Dimensions: Kernel Machines |
|
|
376 | (2) |
|
|
378 | (7) |
|
|
381 | (4) |
|
Machine Capacity: Overfitting or ``Less Is More'' |
|
|
385 | (4) |
|
|
389 | (10) |
|
The k-Nearest Neighbor Classifier |
|
|
389 | (2) |
|
The k-Means Clustering Classifier |
|
|
391 | (5) |
|
|
396 | (3) |
|
|
399 | (34) |
|
|
399 | (4) |
|
|
399 | (4) |
|
McCullough-Pitts Neural Nets |
|
|
403 | (4) |
|
Gradient Descent Method or Delta Rule |
|
|
407 | (4) |
|
Two-Layer Nets: Backpropagation |
|
|
411 | (5) |
|
|
416 | (3) |
|
|
419 | (7) |
|
Stopping Criteria: Cross-Validation |
|
|
419 | (1) |
|
|
420 | (6) |
|
|
426 | (2) |
|
|
428 | (5) |
|
|
429 | (4) |
Annotated Bibliography |
|
433 | (4) |
Index |
|
437 | |