Muutke küpsiste eelistusi

Boosted Statistical Relational Learners: From Benchmarks to Data-Driven Medicine 2014 ed. [Pehme köide]

  • Formaat: Paperback / softback, 74 pages, kõrgus x laius: 235x155 mm, kaal: 1416 g, 25 Illustrations, black and white; VIII, 74 p. 25 illus., 1 Paperback / softback
  • Sari: SpringerBriefs in Computer Science
  • Ilmumisaeg: 25-Mar-2015
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319136437
  • ISBN-13: 9783319136431
Teised raamatud teemal:
  • Pehme köide
  • Hind: 48,70 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 57,29 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 74 pages, kõrgus x laius: 235x155 mm, kaal: 1416 g, 25 Illustrations, black and white; VIII, 74 p. 25 illus., 1 Paperback / softback
  • Sari: SpringerBriefs in Computer Science
  • Ilmumisaeg: 25-Mar-2015
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319136437
  • ISBN-13: 9783319136431
Teised raamatud teemal:
This SpringerBrief addresses the challenges of analyzing multi-relational and noisy data by proposing several Statistical Relational Learning (SRL) methods. These methods combine the expressiveness of first-order logic and the ability of probability theory to handle uncertainty. It provides an overview of the methods and the key assumptions that allow for adaptation to different models and real world applications. The models are highly attractive due to their compactness and comprehensibility but learning their structure is computationally intensive. To combat this problem, the authors review the use of functional gradients for boosting the structure and the parameters of statistical relational models. The algorithms have been applied successfully in several SRL settings and have been adapted to several real problems from Information extraction in text to medical problems. Including both context and well-tested applications, Boosting Statistical Relational Learning from Benchmarks to Data-Driven Medicine is designed for researchers and professionals in machine learning and data mining. Computer engineers or students interested in statistics, data management, or health informatics will also find this brief a valuable resource.
1 Introduction
1(4)
2 Statistical Relational Learning
5(14)
2.1 Representing Structure and Uncertainty
5(2)
2.1.1 Representation: First-Order Logic
5(1)
2.1.2 Uncertainty: Graphical Models
6(1)
2.2 Statistical Relational Models
7(3)
2.2.1 Relational Dependency Networks
8(1)
2.2.2 Markov Logic Networks
9(1)
2.3 Learning in SRL Models
10(6)
2.3.1 Parameter Learning
10(1)
2.3.2 Structure Learning
11(2)
2.3.3 Functional-Gradient Boosting
13(3)
2.4 Benchmark Datasets
16(3)
2.4.1 UW-CSE
16(1)
2.4.2 Cora
16(1)
2.4.3 IMDB
17(2)
3 Boosting (Bi-)Directed Relational Models
19(8)
3.1 Introduction
19(1)
3.2 Boosting RDNs
20(3)
3.3 Empirical Evaluation
23(2)
3.3.1 UW Data Set
23(1)
3.3.2 IMDB Data Set
24(1)
3.3.3 Cora Data Set
25(1)
3.4 Discussion
25(2)
4 Boosting Undirected Relational Models
27(12)
4.1 Introduction
27(1)
4.2 Functional Gradients for MLNs
28(6)
4.2.1 Learning Joint Models
34(1)
4.3 Empirical Evaluation
34(4)
4.3.1 UW Data Set
35(1)
4.3.2 Cora Data Set
35(1)
4.3.3 IMDB Data Set
36(2)
4.4 Discussion
38(1)
5 Boosting in the Presence of Missing Data
39(10)
5.1 Introduction
39(1)
5.2 Structural EM for Relational Functional Gradients
40(6)
5.2.1 Gradients for Hidden Groundings
43(1)
5.2.2 Gradients for Observed Groundings
44(1)
5.2.3 Algorithm for Boosting in Presence of Hidden Data
44(2)
5.3 Empirical Evaluation
46(1)
5.3.1 UW Data Set
46(1)
5.3.2 IMDB Data Set
47(1)
5.4 Discussion
47(2)
6 Boosting Statistical Relational Learning in Action
49(20)
6.1 Adaptation to Sequential Decision Making Problems
49(3)
6.1.1 Relational Imitation Learning
49(3)
6.2 Predicting Cardiovascular Events
52(4)
6.2.1 Application to a Real EHR
55(1)
6.3 Predicting Mild Cognitive Impairment
56(1)
6.4 NLP Applications
57(10)
6.4.1 NFL Relation Extraction
58(1)
6.4.2 Temporal Relation Extraction
59(3)
6.4.3 Weak Supervision
62(5)
6.5 Discussion and Wrap-Up
67(2)
Appendix A BooSTR System 69(2)
References 71