Muutke küpsiste eelistusi

Boundary Conditions and Subelliptic Estimates for Geometric Kramers-Fokker-Planck Operators on Manifolds with Boundaries [Pehme köide]

  • Formaat: Paperback / softback, 142 pages, kõrgus x laius: 254x178 mm, kaal: 235 g
  • Sari: Memoirs of the American Mathematical Society
  • Ilmumisaeg: 01-Mar-2018
  • Kirjastus: American Mathematical Society
  • ISBN-10: 1470428024
  • ISBN-13: 9781470428020
Teised raamatud teemal:
  • Formaat: Paperback / softback, 142 pages, kõrgus x laius: 254x178 mm, kaal: 235 g
  • Sari: Memoirs of the American Mathematical Society
  • Ilmumisaeg: 01-Mar-2018
  • Kirjastus: American Mathematical Society
  • ISBN-10: 1470428024
  • ISBN-13: 9781470428020
Teised raamatud teemal:
Exploring the maximal accretive realizations of geometric Kramers-Fokker-Planck operators on manifolds with boundaries, Nier introduces a general class of boundary conditions that ensures the maximal accretivity and some global sub-elliptic estimates. Those estimates imply nice spectral properties,he says, as well as exponential decay properties for the associated semigroup, The admissible boundary conditions cover a wide range of applications for the usual scalar Kramers-Fokker-Planck equation for Bismut's hypo-elliptic Laplacian. Annotation ©2018 Ringgold, Inc., Portland, OR (protoview.com)
Introduction
One dimensional model problem
Cuspidal semigroups
Separation of variables
General boundary conditions for half-space problems
Geometric Kramers-Fokker-Planck operator
Geometric KFP-operators on manifolds with boundary
Variations on a theorem
Applications
Appendix A. Translation invariant model problems
Appendix B. Partitions of unity
Acknowledgements
Bibliography
Francis Nier, Universite de Paris, France.