Muutke küpsiste eelistusi

Broadband Quantum Noise Reduction in Advanced Virgo Plus: From Frequency-Dependent Squeezing Implementation to Detection Losses and Stray Light Mitigation [Kõva köide]

  • Formaat: Hardback, 250 pages, kõrgus x laius: 235x155 mm, 145 Illustrations, color; 5 Illustrations, black and white; XIX, 250 p. 150 illus., 145 illus. in color., 1 Hardback
  • Sari: Springer Theses
  • Ilmumisaeg: 03-Aug-2025
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031951425
  • ISBN-13: 9783031951428
  • Kõva köide
  • Hind: 141,35 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 166,29 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 250 pages, kõrgus x laius: 235x155 mm, 145 Illustrations, color; 5 Illustrations, black and white; XIX, 250 p. 150 illus., 145 illus. in color., 1 Hardback
  • Sari: Springer Theses
  • Ilmumisaeg: 03-Aug-2025
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031951425
  • ISBN-13: 9783031951428
This book presents the first implementation of frequency-dependent squeezing in the Virgo gravitational wave detector, a technique that reduces quantum noise across the entire detection band. By lowering noise, it enhances Virgos ability to observe the universe.





It provides a detailed account of the experimental optical systemspanning hundreds of metersand the measurement campaign that led to the first observation of frequency-dependent squeezing, with ellipse rotation occurring at the target frequency of a few tens of Hz. Additionally, the book covers the characterization and commissioning of a new Output Mode Cleaner cavity in Virgo to minimize optical losses on squeezed states. Finally, it examines the impact of stray light noise at low frequencies and explores mitigation strategies to improve detector sensitivity.
 Gravitational waves.- Ground based gravitational waves detectors.-
Theory of quantum light in gravitational waves detectors.- Quantum noise
reduction system overview in Advanced Virgo Plus.- Quantum noise reduction
system commissioning.- Stray light in gravitational waves detectors.- Ghost
beams study and mitigation.- Active control of scattered light on the FDS
system.- Matching of the squeezing beam to the ITF.- New high finesse Output
Mode Cleaner for Advanced Virgo Plus.
Eleonora Polini is a physicist specializing in quantum noise reduction for gravitational wave detectors. She earned her Bachelors and Masters degrees in Physics from La Sapienza University of Rome, where she received the Enrico Persico and Tito Maiani Prizes for academic excellence.



She completed her PhD at the Laboratoire dAnnecy de Physique des Particules and Université Savoie Mont Blanc, focusing on frequency-dependent squeezing in the Virgo detector. Her work included upgrading the Output Mode Cleaner cavity and investigating stray light noise, earning her the Virgo Award (2022) and GWICBraccini Prize (2023).



She later conducted postdoctoral research at MIT, working on scattered light analysis for LIGO Hanford, assembling Output Mode Cleaner cavities at Caltech, and developing fiber interferometers for entangled-state gravitational measurements.



Currently, she is a Research Scientist at CNRS in the ARTEMIS laboratory at the Observatoire de la Côte d'Azur, focusing on gravitational wave detectors (current and future) and fundamental physics experiments.