Muutke küpsiste eelistusi

Business Statistics, Student Value Edition and Phstat 9th ed. [Multiple-component retail product]

  • Formaat: Multiple-component retail product, 926 pages, kõrgus x laius x paksus: 272x213x33 mm, kaal: 2087 g, Contains 1 Book
  • Ilmumisaeg: 21-Jul-2016
  • Kirjastus: Pearson
  • ISBN-10: 0134446488
  • ISBN-13: 9780134446486
Teised raamatud teemal:
  • Multiple-component retail product
  • Hind: 227,35 €*
  • * saadame teile pakkumise kasutatud raamatule, mille hind võib erineda kodulehel olevast hinnast
  • See raamat on trükist otsas, kuid me saadame teile pakkumise kasutatud raamatule.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Lisa soovinimekirja
  • Formaat: Multiple-component retail product, 926 pages, kõrgus x laius x paksus: 272x213x33 mm, kaal: 2087 g, Contains 1 Book
  • Ilmumisaeg: 21-Jul-2016
  • Kirjastus: Pearson
  • ISBN-10: 0134446488
  • ISBN-13: 9780134446486
Teised raamatud teemal:

0134446488 / 9780134446486 Business Statistics, Student Value Edition and PHStat, 9/e

 

Package consists of:   

013302248X / 9780133022483 Business Statistics, Student Value Edition

0133990583 / 9780133990584 PHStat for Pearson 5x7 Valuepack Access Code Card

Preface xxi
Chapter 1 The Where, Why, and How of Data Collection 1(30)
What Is Business Statistics?
2(5)
Descriptive Statistics
2(3)
Charts and Graphs
3(2)
Inferential Procedures
5(2)
Estimation
5(1)
Hypothesis Testing
5(2)
Procedures for Collecting Data
7(7)
Data Collection Methods
7(4)
Written Questionnaires and Surveys
9(2)
Direct Observation and Personal Interviews
11(1)
Other Data Collection Methods
11(1)
Data Collection Issues
12(2)
Data Accuracy
12(1)
Interviewer Bias
12(1)
Nonresponse Bias
12(1)
Selection Bias
12(1)
Observer Bias
12(1)
Measurement Error
13(1)
Internal Validity
13(1)
External Validity
13(1)
Populations, Samples, and Sampling Techniques
14(6)
Populations and Samples
14(1)
Parameters and Statistics
15(1)
Sampling Techniques
15(5)
Statistical Sampling
16(4)
Data Types and Data Measurement Levels
20(5)
Quantitative and Qualitative Data
20(1)
Time-Series Data and Cross-Sectional Data
21(1)
Data Measurement Levels
21(4)
Nominal Data
21(1)
Ordinal Data
22(1)
Interval Data
22(1)
Ratio Data
22(3)
A Brief Introduction to Data Mining
25(2)
Data Mining-Finding the Important, Hidden Relationships in Data
25(2)
Visual Summary
27(2)
Key Terms
29(1)
Chapter Exercises
29(1)
Video Case 1: Statistical Data Collection @ McDonald's
30(1)
Chapter 2 Graphs, Charts, and Tables-Describing Your Data 31(50)
Frequency Distributions and Histograms
32(21)
Frequency Distribution
33(4)
Grouped Data Frequency Distributions
37(4)
Steps for Grouping Data into Classes
38(3)
Histograms
41(4)
Issues with Excel
43(2)
Relative Frequency Histograms and Ogives
45(1)
Joint Frequency Distributions
46(7)
Bar Charts, Pie Charts, and Stem and Leaf Diagrams
53(10)
Bar Charts
53(4)
Pie Charts
57(2)
Stem and Leaf Diagrams
59(4)
Line Charts and Scatter Diagrams
63(11)
Line Charts
63(3)
Scatter Diagrams
66(3)
Descriptive Statistics and Data Mining
69(12)
Pareto Charts
69(1)
Scatter Diagrams
70(4)
Visual Summary
74(1)
Equations
75(1)
Key Terms
75(1)
Chapter Exercises
75(3)
Video Case 2: Drive-Thru Service Times @ McDonald's
78(1)
Case 2.1: Server Downtime
79(1)
Case 2.2: Hudson Valley Apples, Inc.
79(1)
Case 2.3: Welco Lumber Company-Part A
80(1)
Chapter 3 Describing Data Using Numerical Measures 81(59)
Measures of Center and Location
81(21)
Parameters and Statistics
82(1)
Population Mean
82(3)
Sample Mean
85(1)
The Impact of Extreme Values on the Mean
86(1)
Median
87(1)
Skewed and Symmetric Distributions
88(1)
Mode
89(1)
Applying the Measures of Central Tendency
90(2)
Issues with Excel
91(1)
Other Measures of Location
92(3)
Weighted Mean
92(1)
Percentiles
93(2)
Quartiles
95(1)
Issues with Excel
95(1)
Box and Whisker Plots
95(2)
Data-Level Issues
97(5)
Measures of Variation
102(11)
Range
103(1)
Interquartile Range
103(1)
Population Variance and Standard Deviation
104(3)
Sample Variance and Standard Deviation
107(6)
Using the Mean and Standard Deviation Together
113(10)
Coefficient of Variation
113(3)
The Empirical Rule
115(1)
Tchebysheff's Theorem
116(1)
Standardized Data Values
117(6)
Visual Summary
123(1)
Equations
124(1)
Key Terms
125(1)
Chapter Exercises
125(4)
Video Case 3: Drive-Thru Service Times @ McDonald's
129(1)
Case 3.1: WGI-Human Resources
130(1)
Case 3.2: National Call Center
131(1)
Case 3.3: Welco Lumber Company-Part B
131(1)
Case 3.4: AJ's Fitness Center
132(1)
Chapters 1-3 Special Review Section
133(7)
Chapters 1-3
133(3)
Exercises
136(2)
Review Case 1: State Department of Insurance
138(1)
Term Project Assignments
138(2)
Chapter 4 Introduction to Probability 140(42)
The Basics of Probability
141(12)
Important Probability Terms
141(4)
Events and Sample Space
141(1)
Using Tree Diagrams
142(2)
Mutually Exclusive Events
144(1)
Independent and Dependent Events
145(1)
Methods of Assigning Probability
145(8)
Classical Probability Assessment
146(1)
Relative Frequency Assessment
147(2)
Subjective Probability Assessment
149(4)
The Rules of Probability
153(23)
Measuring Probabilities
153(7)
Possible Values and the Summation of Possible Values
153(1)
Addition Rule for Individual Outcomes
153(3)
Complement Rule
156(1)
Addition Rule for Any Two Events
157(3)
Addition Rule for Mutually Exclusive Events
160(1)
Conditional Probability
160(5)
Tree Diagrams
163(1)
Conditional Probability for Independent Events
163(2)
Multiplication Rule
165(3)
Multiplication Rule for Two Events
165(1)
Using a Tree Diagram
166(1)
Multiplication Rule for Independent Events
166(2)
Bayes' Theorem
168(8)
Visual Summary
176(1)
Equations
177(1)
Key Terms
177(1)
Chapter Exercises
177(3)
Case 4.1: Great Air Commuter Service
180(1)
Case 4.2: Let's Make a Deal
181(1)
Chapter 5 Discrete Probability Distributions 182(42)
Introduction to Discrete Probability Distributions
183(7)
Random Variables
183(1)
Displaying Discrete Probability Distributions Graphically
183(1)
Mean and Standard Deviation of Discrete Distributions
184(6)
Calculating the Mean
184(1)
Calculating the Standard Deviation
185(5)
The Binomial Probability Distribution
190(14)
The Binomial Distribution
190(1)
Characteristics of the Binomial Distribution
191(13)
Combinations
192(2)
Binomial Formula
194(1)
Using the Binomial Distribution Table
195(1)
Mean and Standard Deviation of the Binomial Distribution
196(3)
Additional Information about the Binomial Distribution
199(5)
Other Discrete Probability Distributions
204(13)
The Poisson Distribution
204(5)
Characteristics of the Poisson Distribution
204(2)
Poisson Probability Distribution Table
206(2)
The Mean and Standard Deviation of the Poisson Distribution
208(1)
The Hypergeometric Distribution
209(16)
The Hypergeometric Distribution with More Than Two Possible Outcomes per Trial
213(4)
Visual Summary
217(1)
Equations
218(1)
Key Terms
218(1)
Chapter Exercises
218(3)
Case 5.1: SaveMor Pharmacies
221(1)
Case 5.2: Arrowmark Vending
222(1)
Case 5.3: Boise Cascade Corporation
222(2)
Chapter 6 Introduction to Continuous Probability Distributions 224(31)
The Normal Probability Distribution
225(15)
The Normal Distribution
225(1)
The Standard Normal Distribution
226(14)
Using the Standard Normal Table
228(8)
Approximate Areas under the Normal Curve
236(4)
Other Continuous Probability Distributions
240(8)
Uniform Probability Distribution
240(2)
The Exponential Probability Distribution
242(6)
Visual Summary
248(1)
Equations
249(1)
Key Terms
249(1)
Chapter Exercises
249(4)
Case 6.1: State Entitlement Programs
253(1)
Case 6.2: Credit Data, Inc.
253(1)
Case 6.3: American Oil Company
254(1)
Chapter 7 Introduction to Sampling Distributions 255(40)
Sampling Error: What It Is and Why It Happens
256(8)
Calculating Sampling Error
256(8)
The Role of Sample Size in Sampling Error
259(5)
Sampling Distribution of the Mean
264(15)
Simulating the Sampling Distribution for X
265(7)
Sampling from Normal Populations
267(5)
The Central Limit Theorem
272(7)
Sampling Distribution of a Proportion
279(10)
Working with Proportions
279(3)
Sampling Distribution of p
282(7)
Visual Summary
289(1)
Equations
290(1)
Key Terms
290(1)
Chapter Exercises
290(4)
Case 7.1: Carpita Bottling Company
294(1)
Case 7.2: Truck Safety Inspection
294(1)
Chapter 8 Estimating Single Population Parameters 295(41)
Point and Confidence Interval Estimates for a Population Mean
296(18)
Point Estimates and Confidence Intervals
296(1)
Confidence Interval Estimate for the Population Mean, CT Known
297(7)
Confidence Interval Calculation
299(2)
Impact of the Confidence Level on the Interval Estimate
301(3)
Impact of the Sample Size on the Interval Estimate
304(1)
Confidence Interval Estimates for the Population Mean, sigma Unknown
304(1)
Student's t-Distribution
304(10)
Estimation with Larger Sample Sizes
310(4)
Determining the Required Sample Size for Estimating a Population Mean
314(7)
Determining the Required Sample Size for Estimating mu, sigma Known
315(1)
Determining the Required Sample Size for Estimating mu, sigma Unknown
316(5)
Estimating a Population Proportion
321(8)
Confidence Interval Estimate for a Population Proportion
321(2)
Determining the Required Sample Size for Estimating a Population Proportion
323(6)
Visual Summary
329(1)
Equations
330(1)
Key Terms
330(1)
Chapter Exercises
331(2)
Video Case 4: New Product Introductions @ McDonald's
333(1)
Case 8.1: Management Solutions, Inc.
334(1)
Case 8.2: Federal Aviation Administration
334(1)
Case 8.3: Cell Phone Use
334(2)
Chapter 9 Introduction to Hypothesis Testing 336(50)
Hypothesis Tests for Means
337(21)
Formulating the Hypotheses
337(4)
Null and Alternative Hypotheses
337(1)
Testing the Status Quo
337(1)
Testing a Research Hypothesis
338(1)
Testing a Claim about the Population
338(2)
Types of Statistical Errors
340(1)
Significance Level and Critical Value
341(1)
Hypothesis Test for p, v Known
342(6)
Calculating Critical Values
342(2)
Decision Rules and Test Statistics
344(3)
p-Value Approach
347(1)
Types of Hypothesis Tests
348(1)
p-Value for Two-Tailed Tests
349(2)
Hypothesis Test for mu, or sigma Unknown
351(7)
Hypothesis Tests for a Proportion
358(7)
Testing a Hypothesis about a Single Population Proportion
358(7)
Type II Errors
365(11)
Calculating Beta
365(2)
Controlling Alpha and Beta
367(4)
Power of the Test
371(5)
Visual Summary
376(1)
Equations
377(1)
Key Terms
378(1)
Chapter Exercises
378(5)
Video Case 4: New Product Introductions McDonald's
383(1)
Case 9.1: Campbell Brewery, Inc.-Part 1
383(1)
Case 9.2: Wings of Fire
384(2)
Chapter 10 Estimation and Hypothesis Testing for Two Population Parameters 386(49)
Estimation for Two Population Means Using Independent Samples
387(11)
Estimating the Difference between Two Population Means When sigma1 and sigma2 Are Known, Using Independent Samples
387(2)
Estimating the Difference between Two Means When sigma1 and sigma2 Are Unknown, Using Independent Samples
389(9)
What If the Population Variances Are Not Equal?
393(5)
Hypothesis Tests for Two Population Means Using Independent Samples
398(13)
Testing for mu1 - mu2 When sigma1 and sigma2 Are Known, Using Independent Samples
398(2)
Using p-Values
400(1)
Testing mu1-mu2 when sigma1 and sigma2 Are Unknown, Using Independent Samples
400(11)
What If the Population Variances Are Not Equal?
407(4)
Interval Estimation and Hypothesis Tests for Paired Samples
411(8)
Why Use Paired Samples?
411(3)
Hypothesis Testing for Paired Samples
414(5)
Estimation and Hypothesis Tests for Two Population Proportions
419(8)
Estimating the Difference between Two Population Proportions
419(1)
Hypothesis Tests for the Difference between Two Population Proportions
420(7)
Visual Summary
427(1)
Equations
428(1)
Key Terms
429(1)
Chapter Exercises
429(3)
Case 10.1: Motive Power Company-Part 1
432(1)
Case 10.2: Hamilton Marketing Services
433(1)
Case 10.3: Green Valley Assembly Company
433(1)
Case 10.4: U-Need-It Rental Agency
434(1)
Chapter 11 Hypothesis Tests and Estimation for Population Variances 435(27)
Hypothesis Tests and Estimation for a Single Population Variance
435(10)
Chi-Square Test for One Population Variance
436(5)
Interval Estimation for a Population Variance
441(4)
Hypothesis Tests for Two Population Variances
445(12)
F-Test for Two Population Variances
445(18)
Additional F-Test Considerations
453(4)
Visual Summary
457(1)
Equations
458(1)
Key Terms
458(1)
Chapter Exercises
458(2)
Case 11.1: Motive Power Company-Part 2
460(2)
Chapter 12 Analysis of Variance 462(68)
One-Way Analysis of Variance
463(20)
Introduction to One-Way ANOVA
463(1)
Partitioning the Sum of Squares
464(1)
The ANOVA Assumptions
465(2)
Applying One-Way ANOVA
467(11)
The Tukey-Kramer Procedure for Multiple Comparisons
473(5)
Fixed Effects Versus Random Effects in Analysis of Variance
478(5)
Randomized Complete Block Analysis of Variance
483(11)
Randomized Complete Block ANOVA
483(7)
Was Blocking Necessary?
487(3)
Fisher's Least Significant Difference Test
490(4)
Two-Factor Analysis of Variance with Replication
494(11)
Two-Factor ANOVA with Replications
495(6)
Interaction Explained
498(3)
A Caution about Interaction
501(4)
Visual Summary
505(1)
Equations
506(1)
Key Terms
506(1)
Chapter Exercises
506(3)
Video Case 3: Drive-Thru Service Times @ McDonald's
509(1)
Case 12.1: Agency for New Americans
510(1)
Case 12.2: McLaughlin Salmon Works
511(1)
Case 12.3: NW Pulp and Paper
511(1)
Case 12.4: Quinn Restoration
512(2)
Business Statistics Capstone Project
512(2)
Chapters 8-12 Special Review Section
514(16)
Chapters 8-12
514(12)
Using the Flow Diagrams
526(1)
Exercises
527(2)
Term Project Assignments
529(1)
Business Statistics Capstone Project
529(1)
Chapter 13 Goodness-of-Fit Tests and Contingency Analysis 530(29)
Introduction to Goodness-of-Fit Tests
530(14)
Chi-Square Goodness-of-Fit Test
531(13)
Introduction to Contingency Analysis
544(10)
2 x 2 Contingency Tables
544(4)
r x c Contingency Tables
548(2)
Chi-Square Test Limitations
550(4)
Visual Summary
554(1)
Equations
555(1)
Key Term
555(1)
Chapter Exercises
555(2)
Case 13.1: American Oil Company
557(1)
Case 13.2: Bentford Electronics-Part 1
558(1)
Chapter 14 introduction to Linear Regression and Correlation Analysis 559(53)
Scatter Plots and Correlation
560(10)
The Correlation Coefficient
560(10)
Significance Test for the Correlation
562(4)
Cause-and-Effect Interpretations
566(4)
Simple Linear Regression Analysis
570(22)
The Regression Model and Assumptions
570(1)
Meaning of the Regression Coefficients
571(5)
Least Squares Regression Properties
576(4)
Significance Tests in Regression Analysis
580(12)
The Coefficient of Determination, R2
580(3)
Significance of the Slope Coefficient
583(9)
Uses for Regression Analysis
592(12)
Regression Analysis for Description
592(3)
Regression Analysis for Prediction
595(3)
Confidence Interval for the Average y, Given x
595(1)
Prediction Interval for a Particular y, Given x
596(2)
Common Problems Using Regression Analysis
598(6)
Visual Summary
604(1)
Equations
605(1)
Key Terms
606(1)
Chapter Exercises
606(3)
Case 14.1: A & A Industrial Products
609(1)
Case 14.2: Sapphire Coffee-Part 1
610(1)
Case 14.3: Alamar Industries
610(1)
Case 14.4: Continental Trucking
611(1)
Chapter 15 Multiple Regression Analysis and Model Building 612(71)
Introduction to Multiple Regression Analysis
613(18)
Basic Model-Building Concepts
615(24)
Model Specification
615(1)
Model Building
616(1)
Model Diagnosis
616(3)
Computing the Regression Equation
619(1)
The Coefficient of Determination
620(1)
Model Diagnosis
620(1)
Is the Model Significant?
621(1)
Are the Individual Variables Significant?
622(1)
Is the Standard Deviation of the Regression Model Too Large?
623(2)
Is Multicollinearity a Problem?
625(1)
Confidence Interval Estimation for Regression Coefficients
626(5)
Using Qualitative Independent Variables
631(8)
Possible Improvements to the First City Appraisal Model
635(4)
Working with Nonlinear Relationships
639(15)
Analyzing Interaction Effects
643(4)
The Partial-FTest
647(7)
Stepwise Regression
654(10)
Forward Selection
654(1)
Backward Elimination
655(3)
Standard Stepwise Regression
658(1)
Best Subsets Regression
659(5)
Determining the Aptness of the Model
664(11)
Analysis of Residuals
664(8)
Checking for Linearity
664(3)
Do the Residuals Have Equal Variances at all Levels of Each x Variable?
667(1)
Are the Residuals Independent?
667(1)
Checking for Normally Distributed Error Terms
668(4)
Corrective Actions
672(3)
Visual Summary
675(1)
Equations
676(1)
Key Terms
676(1)
Chapter Exercises
676(4)
Case 15.1: Dynamic Scales, Inc.
680(1)
Case 15.2: Glaser Machine Works
681(1)
Case 15.3: Hawlins Manufacturing
681(1)
Case 15.4: Sapphire Coffee-Part 2
682(1)
Case 15.5: Wendell Motors
682(1)
Chapter 16 Analyzing and Forecasting Time-Series Data 683(60)
Introduction to Forecasting, Time-Series Data, and Index Numbers
683(14)
General Forecasting Issues
684(1)
Components of a lime Series
684(3)
Trend Component
685(1)
Seasonal Component
685(2)
Cyclical Component
687(1)
Random Component
687(1)
Introduction to Index Numbers
687(2)
Aggregate Price Indexes
689(1)
Weighted Aggregate Price Indexes
690(3)
The Paasche Index
691(1)
The Laspeyres Index
692(1)
Commonly Used Index Numbers
693(1)
Consumer Price Index
693(1)
Producer Price Index
694(1)
Stock Market Indexes
694(1)
Using Index Numbers to Deflate a Time Series
694(3)
Trend-Based Forecasting Techniques
697(26)
Developing a Trend-Based Forecasting Model
697(3)
Comparing the Forecast Values to the Actual Data
700(8)
Autocorrelation
702(4)
True Forecasts
706(2)
Nonlinear Trend Forecasting
708(4)
Some Words of Caution
712(1)
Adjusting for Seasonality
712(11)
Computing Seasonal Indexes
713(3)
The Need to Normalize the Indexes
716(1)
Deseasonalizing
716(2)
Using Dummy Variables to Represent Seasonality
718(5)
Forecasting Using Smoothing Methods
723(11)
Exponential Smoothing
724(19)
Single Exponential Smoothing
724(4)
Double Exponential Smoothing
728(6)
Visual Summary
734(1)
Equations
735(1)
Key Terms
735(1)
Chapter Exercises
736(3)
Video Case 2: Restaurant Location and Re-imaging Decisions @ McDonald's
739(1)
Case 16.1: Park Falls Chamber of Commerce
740(1)
Case 16.2: The St. Louis Companies
741(1)
Case 16.3: Wagner Machine Works
741(2)
Chapter 17 Introduction to Nonparametric Statistics 743(31)
The Wilcoxon Signed Rank Test for One Population Median
743(6)
The Wilcoxon Signed Rank Test-Single Population
744(5)
Nonparametric Tests for Two Population Medians
749(12)
The Mann-Whitney U-Test
749(3)
Mann-Whitney U-Test-Large Samples
752(9)
The Wilcoxon Matched-Pairs Signed Rank Test
754(2)
Ties in the Data
756(1)
Large-Sample Wilcoxon Test
756(5)
Kruskal-Wallis One-Way Analysis of Variance
761(7)
Limitations and Other Considerations
765(3)
Visual Summary
768(1)
Equations
769(1)
Chapter Exercises
770(3)
Case 17.1: Bentford Electronics-Part 2
773(1)
Chapter 18 Introduction to Quality and Statistical Process Control 774(27)
Introduction to Statistical Process Control Charts
774(22)
The Existence of Variation
775(2)
Sources of Variation
775(1)
Types of Variation
776(1)
The Predictability of Variation: Understanding the Normal Distribution
776(1)
The Concept of Stability
776(1)
Introducing Statistical Process Control Charts
777(1)
x Chart and R-Chart
778(18)
Using the Control Charts
782(4)
p-Charts
786(3)
Using the p-Chart
789(1)
c-Charts
789(3)
Other Control Charts
792(4)
Visual Summary
796(1)
Equations
797(1)
Chapter Exercises
798(1)
Case 18.1: Izbar Precision Casters, Inc.
799(2)
Appendices 801(42)
Appendix A Random Numbers Table
802(1)
Appendix B Cumulative Binomial Distribution Table
803(13)
Appendix C Cumulative Poisson Probability Distribution Table
816(5)
Appendix D Standard Normal Distribution Table
821(1)
Appendix E Exponential Distribution Table
822(1)
Appendix F Values of t for Selected Probabilities
823(1)
Appendix G Values of x2 for Selected Probabilities
824(1)
Appendix H FDistribution Table
825(6)
Appendix I Distribution of the Studentized Range (q-values)
831(2)
Appendix J Critical Values of r in the Runs Test
833(1)
Appendix K Mann-Whitney UTest Probabilities (n < 9)
834(2)
Appendix L Mann-Whitney U Test Critical Values (9 < or = to n < or = to 20)
836(2)
Appendix M Critical Values of Tin the Wilcoxon Matched-Pairs Signed-Ranks Test (n < or = to 25)
838(1)
Appendix N Critical Values dL and dU of the Durbin-Watson Statistic D
839(2)
Appendix O Lower and Upper Critical Values W of Wilcoxon Signed-Ranks Test
841(1)
Appendix P Control Chart Factors
842(1)
Answers to Selected Odd-Numbered Problems 843(20)
References 863(4)
Glossary 867(6)
Index 873