Muutke küpsiste eelistusi

Cantor Minimal Systems [Pehme köide]

  • Formaat: Paperback / softback, 184 pages, kõrgus x laius: 254x178 mm, kaal: 300 g
  • Sari: University Lecture Series
  • Ilmumisaeg: 30-Apr-2018
  • Kirjastus: American Mathematical Society
  • ISBN-10: 1470441152
  • ISBN-13: 9781470441159
Teised raamatud teemal:
  • Formaat: Paperback / softback, 184 pages, kõrgus x laius: 254x178 mm, kaal: 300 g
  • Sari: University Lecture Series
  • Ilmumisaeg: 30-Apr-2018
  • Kirjastus: American Mathematical Society
  • ISBN-10: 1470441152
  • ISBN-13: 9781470441159
Teised raamatud teemal:
Within the subject of topological dynamics, there has been considerable recent interest in systems where the underlying topological space is a Cantor set. Such systems have an inherently combinatorial nature, and seminal ideas of Anatoly Vershik allowed for a combinatorial model, called the Bratteli-Vershik model, for such systems with no non-trivial closed invariant subsets. This model led to a construction of an ordered abelian group which is an algebraic invariant of the system providing a complete classification of such systems up to orbit equivalence.

The goal of this book is to give a statement of this classification result and to develop ideas and techniques leading to it. Rather than being a comprehensive treatment of the area, this book is aimed at students and researchers trying to learn about some surprising connections between dynamics and algebra. The only background material needed is a basic course in group theory and a basic course in general topology.
Preface ix
Chapter 1 An example: A tale of two equivalence relations
1(6)
Chapter 2 Basics: Cantor sets and orbit equivalence
7(12)
1 Cantor sets
7(7)
2 Orbit equivalence
14(5)
Chapter 3 Bratteli diagrams: Generalizing the example
19(10)
Chapter 4 The Bratteli-Vershik model: Generalizing the example
29(8)
Chapter 5 The Bratteli-Vershik model: Completeness
37(6)
Chapter 6 Etale equivalence relations: Unifying the examples
43(10)
1 Local actions and etale equivalence relations
44(4)
2 Re as an etale equivalence relation
48(2)
3 Rq as an etale equivalence relation
50(3)
Chapter 7 The D invariant
53(22)
1 The group C(X, Z)
53(2)
2 Ordered abelian groups
55(1)
3 The invariant
56(2)
4 Inductive limits of groups
58(3)
5 The dimension group of a Bratteli diagram
61(7)
6 The invariant for AF-equivalence relations
68(2)
7 The invariant for Z-actions
70(5)
Chapter 8 The Effros-Handelman-Shen Theorem
75(10)
1 The statement
75(3)
2 The proof
78(7)
Chapter 9 The Bratteli-Elliott-Krieger Theorem
85(6)
Chapter 10 Strong orbit equivalence
91(4)
1 Orbit cocycles
91(1)
2 Strong orbit equivalence and classification
92(3)
Chapter 11 The Dm invariant
95(22)
1 An innocent's guide to measure theory
95(4)
2 States on ordered abelian groups
99(3)
3 R-invariant measures
102(1)
4 R-invariant measures and the D invariant
103(1)
5 The invariant
104(5)
6 The invariant for AF-equivalence relations
109(4)
7 The invariant for Z-actions
113(1)
8 The classification of odometers
114(3)
Chapter 12 The absorption theorem
117(12)
1 The simplest version
117(1)
2 The proof
118(8)
3 Matui's absorption theorem
126(3)
Chapter 13 The classification of AF-equivalence relations
129(8)
1 An example
129(4)
2 The classification theorem
133(4)
Chapter 14 The classification of $$-actions
137(2)
Appendix A. Examples 139(6)
Bibliography 145(2)
Index of terminology 147(2)
Index of notation 149
Ian F. Putnam, University of Victoria, BC, Canada.