Muutke küpsiste eelistusi

Capillary Electromigration Separation Methods [Pehme köide]

Edited by (Department of Chemistry, Wayne State University, Detroit, MI, USA)
  • Formaat: Paperback / softback, 626 pages, kõrgus x laius: 235x191 mm, kaal: 1470 g
  • Sari: Handbooks in Separation Science
  • Ilmumisaeg: 14-Apr-2018
  • Kirjastus: Elsevier Science Publishing Co Inc
  • ISBN-10: 0128093757
  • ISBN-13: 9780128093757
Teised raamatud teemal:
  • Formaat: Paperback / softback, 626 pages, kõrgus x laius: 235x191 mm, kaal: 1470 g
  • Sari: Handbooks in Separation Science
  • Ilmumisaeg: 14-Apr-2018
  • Kirjastus: Elsevier Science Publishing Co Inc
  • ISBN-10: 0128093757
  • ISBN-13: 9780128093757
Teised raamatud teemal:

Capillary Electromigration Separation Methods is a thorough, encompassing reference that not only defines the concept of contemporary practice, but also demonstrates its implementation in laboratory science. Chapters are authored by recognized experts in the field, ensuring that the content reflects the latest developments in research. Thorough, comprehensive coverage makes this the ideal reference for project planning, and extensive selected referencing facilitates identification of key information. The book defines the concept of contemporary practice in capillary electromigration separation methods, also discussing its applications in small mass ions, stereoisomers, proteins and oligonucleotides.

  • Edited and authored by world-leading capillary electrophoresis experts
  • Presents comprehensive coverage on the subject
  • Includes extensive referencing that facilitates the identification of key research developments
  • Provides more than 50 figures and tables that aid in the retention of key concepts
Contributors xvii
Chapter 1 Milestones in the Development of Capillary Electromigration Techniques
1(20)
Gerhardus de Jong
1.1 Introduction
1(2)
1.2 Instrumentation
3(3)
1.2.1 Apparatus and Capillaries
3(1)
1.2.2 Detection
3(2)
1.2.3 Microchip Capillary Electrophoresis
5(1)
1.3 Electrokinetic Chromatography
6(2)
1.4 Special CE Modes
8(3)
1.4.1 Capillary Gel Electrophoresis
8(2)
1.4.2 Capillary Isoelectric Focusing
10(1)
1.4.3 Affinity Capillary Electrophoresis
10(1)
1.5 Preconcentration in CE
11(2)
1.6 Applicability
13(8)
References
17(4)
Chapter 2 Theoretical Principles of Capillary Electromigration Methods
21(24)
Wolfgang Thormann
2.1 Introduction
21(3)
2.2 Theoretical Aspects of CE
24(11)
2.2.1 Electrokinetic Phenomena and Fundamental Aspects of Electrophoretic Transport
24(4)
2.2.2 The Concept of Mobility and Other Separation Aspects
28(3)
2.2.3 The Continuity Equation and Simulation of Electrophoretic Separations
31(4)
2.3 Survey of Selected CE Aspects Explored Through Theoretical Approaches
35(3)
2.4 Concluding Remarks
38(7)
References
39(6)
Chapter 3 Column Technology for Capillary Electromigration Methods
45(24)
Laura Sola
3.1 Introduction
45(1)
3.2 Dynamic Coatings
46(9)
3.2.1 Small Molecules
47(3)
3.2.2 Polymeric Additives
50(5)
3.3 Permanent Coatings
55(4)
3.3.1 Silanization
56(1)
3.3.2 Hydrophilic Coatings
56(3)
3.4 Nanomaterial Layers
59(4)
3.4.1 Nanoparticles
59(1)
3.4.2 Carbon Nanomaterials
60(3)
3.5 Conclusions
63(6)
References
64(5)
Chapter 4 Capillary Electrophoresis in Organic Solvents
69(44)
Ernst Kenndler
Norbert M. Maier
4.1 Preface
70(3)
4.2 Acid-Base Reactions in Organic Solvents
73(7)
4.2.1 pKa and pH in Organic Solvents
73(7)
4.3 Electrically Driven Migration
80(9)
4.3.1 Electroosmosis: Flow of Bulk Solvent
80(2)
4.3.2 Ion Migration, Mobility, and Solvent
82(7)
4.4 Peak Broadening: Separation Efficiency, Plate Height, and Plate Number in Different Solvents
89(14)
4.4.1 Extracolumn Effects
90(1)
4.4.2 Longitudinal Diffusion: The Inevitable Source of Peak Broadening
91(6)
4.4.3 Influence of Solvent on Peak Broadening by Other Sources than Diffusion
97(6)
4.5 Applications
103(5)
4.5.1 Exploiting pKa Shifts of Neutral Acids to Create BGEs Buffering for Amines in Methanol
103(2)
4.5.2 Using pKa Shifts in Acetonitrile to Achieve Protonation of Very Weak Bases to Enable CZE Analysis of Acrylamide in Real-World Samples
105(1)
4.5.3 Exploiting Heteroconjugation in Acetonitrile to Generate Charged Phenol-Salicylate Associates Amenable for CZE Analysis
106(1)
4.5.4 Improving CZE Separation of Peptides With Ethanol as Solvent for Microchip CZE/Electrospray Mass Spectrometry
107(1)
4.6 Conclusions
108(5)
References
109(4)
Chapter 5 Micellar and Microemulsion Electrokinetic Chromatography
113(30)
Ute Pyell
5.1 Introduction and Terminology
113(2)
5.2 Physicochemical Background
115(5)
5.2.1 Micelles
115(3)
5.2.2 Sodium Dodecyl Sulfate
118(2)
5.2.3 Microdroplets
120(1)
5.3 Separation of Neutral Solutes
120(10)
5.3.1 The Pseudophase Model
120(2)
5.3.2 Elution Modes
122(1)
5.3.3 Resolution
123(2)
5.3.4 Method Development
125(5)
5.4 Separation of Weak Electrolytes
130(4)
5.4.1 Thermodynamic Models
130(3)
5.4.2 Pseudostationary Ion Exchangers
133(1)
5.5 Comparison of MEKC to MEEKC
134(1)
5.6 Online Focusing
135(1)
5.7 Conclusions
136(7)
References
136(7)
Chapter 6 Capillary Gel and Sieving Electrophoresis
143(24)
Ivan Miksik
6.1 Introduction
143(1)
6.2 Gels
144(1)
6.3 Protein Analysis
145(7)
6.3.1 Gels
145(5)
6.3.2 Capillary Coatings
150(2)
6.3.3 CGE in Two-Dimensional Separation of Proteins
152(1)
6.4 Nucleic Acid Analysis
152(6)
6.4.1 Gels
154(4)
6.5 Miniaturization---Lab-on-a-Chip
158(3)
6.5.1 Commercially Available Chip Electrophoresis
160(1)
6.6 Conclusions
161(6)
Acknowledgments
161(1)
References
161(6)
Chapter 7 Capillary Isoelectric Focusing
167(22)
Kiyohito Shimura
7.1 Introduction
168(1)
7.2 Resolving Power of IEF
169(1)
7.3 Capillary Wall Coating
170(1)
7.3.1 Fused-Silica Capillary
170(1)
7.3.2 Coating on the Inner Wall
170(1)
7.4 The Natural pH Gradient
171(3)
7.4.1 The Carrier Ampholyte
171(1)
7.4.2 Nonlinearity of the Natural pH Gradient
172(1)
7.4.3 Electrode Solutions
172(1)
7.4.4 The Spacer
173(1)
7.5 Focusing
174(3)
7.5.1 Coalescence of Focusing Double Peaks
174(1)
7.5.2 Drift of the Natural pH Gradient
175(2)
7.5.3 Obstacles
177(1)
7.6 Estimation of pI
177(2)
7.6.1 pI Markers
178(1)
7.6.2 Use of two Ranking pI Markers
178(1)
7.7 Detection
179(5)
7.7.1 Detection Principles
179(3)
7.7.2 Static Single-Point Detection
182(1)
7.7.3 Whole-Column Detection
183(1)
7.8 Conclusion
184(5)
References
185(4)
Chapter 8 Capillary Isotachophoresis
189(20)
Takeshi Hirokawa
8.1 Introduction
190(1)
8.2 Principles of ITP
190(6)
8.2.1 Electrophoretic Mobility of Ions
190(1)
8.2.2 Electrolyte System
191(1)
8.2.3 Separation Process
192(1)
8.2.4 Steady State
193(1)
8.2.5 Qualitative and Quantitative Analysis
194(1)
8.2.6 Separation Optimization
195(1)
8.3 Apparatus
196(2)
8.3.1 Instrumentation
196(1)
8.3.2 Detectors
197(1)
8.4 Typical Applications of Conventional ITP
198(3)
8.4.1 Separation of Weak Ions Using pH Effect
198(1)
8.4.2 Separation Using the Solvent Effect
198(1)
8.4.3 Separation of Inorganic Ions Using Complex Formation
199(1)
8.4.4 Note on Minor Component Analysis
200(1)
8.5 ITP as a Preconcentration Technique for CE
201(6)
8.5.1 Transient Isotachophoresis
202(1)
8.5.2 Electrokinetic Supercharging
203(4)
8.6 Computer Simulation
207(1)
8.7 Conclusion
207(2)
References
208(1)
Chapter 9 Capillary Electrochromatography
209(26)
Chao Yan
Yun Xue
Yan Wang
9.1 Background of Capillary Electrochromatography
209(2)
9.2 Fundamentals of CEC
211(3)
9.3 Basic Instrumentation for CEC
214(2)
9.4 Classification of CEC Columns
216(4)
9.4.1 Packed Columns
216(3)
9.4.2 Monolithic Columns
219(1)
9.4.3 Open-Tubular Columns
220(1)
9.5 Detection Methods in CEC
220(5)
9.5.1 Ultraviolet Detector
221(1)
9.5.2 Laser-Induced Fluorescence
221(1)
9.5.3 Amperometric Detector
221(1)
9.5.4 Chemiluminescence Detector
221(1)
9.5.5 Microflow Evaporative Light-Scattering Detector
222(1)
9.5.6 Condensation Nucleation Light-Scattering Detection
222(1)
9.5.7 NMR Spectrometry
222(1)
9.5.8 Mass Spectrometry
223(2)
9.6 Applications
225(1)
9.7 Future Trends
226(9)
Acknowledgments
226(1)
References
226(9)
Chapter 10 Method Development and Validation of Capillary Electromigration Methods
235(34)
Cari E. Sanger-van de Griend
Ann Van Schepdael
10.1 Introduction
236(1)
10.2 Analytical Quality by Design and Method Life Cycle Management
237(2)
10.3 Method Development
239(18)
10.3.1 Method Development Plan
239(3)
10.3.2 Background Electrolyte
242(5)
10.3.3 Capillary
247(3)
10.3.4 Sample Introduction
250(3)
10.3.5 Detection
253(2)
10.3.6 Method Optimization
255(2)
10.4 Method Validation
257(7)
10.4.1 Specificity
260(1)
10.4.2 Linearity
260(1)
10.4.3 Range
260(1)
10.4.4 Accuracy
261(1)
10.4.5 Precision
261(1)
10.4.6 Detection Limit
261(1)
10.4.7 Quantitation Limit
262(1)
10.4.8 System Suitability Testing
262(2)
10.5 Conclusions
264(5)
References
264(5)
Chapter 11 Instrumental Platforms for Capillary and Microchip Electromigration Separation Techniques
269(24)
Cyro L.S. Chagas
Roger C. Moreira
Lucas P. Bressan
Dosil P. de Jesus
Jose A.F. da Silva
Wendell K.T. Coltro
11.1 Introduction
270(1)
11.2 High-Voltage Power Supplies
270(1)
11.3 Sample Injection for Conventional CE
271(2)
11.3.1 HD Injection
271(1)
11.3.2 EK Injection
272(1)
11.4 Temperature Control
273(1)
11.5 Detectors for Conventional CE
273(4)
11.5.1 Optical Detection
274(1)
11.5.2 Electrochemical Detection
275(2)
11.6 CE Coupled to Flow Injection
277(1)
11.7 Chip-Based Platforms
278(3)
11.7.1 Microfabrication
279(2)
11.8 Sample Introduction Methods for ME
281(3)
11.8.1 HD Injection
281(1)
11.8.2 EK Injection
281(3)
11.9 Detection Systems for ME
284(1)
11.10 High-Throughput Analysis
285(8)
Acknowledgments
287(1)
References
287(6)
Chapter 12 Coupling of Capillary Electromigration Techniques to Mass Spectrometry
293(20)
Christian Neusuß
Jennifer Romer
Oliver Hocker
Kevin Jooß
12.1 Introduction
293(1)
12.2 Coupling of Electromigration Techniques to Mass Spectrometry
294(1)
12.3 Interfaces for CE-ESI-MS Coupling
295(4)
12.3.1 Sheath Liquid Interfaces
295(2)
12.3.2 Sheathless Interfaces
297(2)
12.4 Methods and Applications in CE-MS
299(4)
12.4.1 Back Ground Electrolytes for CE-MS
299(1)
12.4.2 Capillary Coatings for CE-MS
300(1)
12.4.3 Parameters of Sheath Liquid in CE-MS
301(1)
12.4.4 Important Applications of CE-MS
302(1)
12.5 Combining MS-Interfering CE Electrolytes With Mass Spectrometry
303(6)
12.5.1 Complete Exchange of the Background Electrolyte
305(1)
12.5.2 Compromise Between Separation and Ionization Efficiency
305(1)
12.5.3 Alternative CE-ESI-Interface
306(1)
12.5.4 Alternative Ionization Techniques
306(1)
12.5.5 Two-Dimensional Separation Techniques
307(2)
12.6 Future Trends
309(4)
References
309(4)
Chapter 13 Stacking and Multidimensional Techniques for Capillary Electromigration Methods
313(22)
Wojciech Grochocki
Michal J. Markuszewski
Joselito P. Quirino
13.1 Introduction
314(1)
13.2 Stacking Techniques
315(7)
13.2.1 Stacking Based on Field Enhancement/Amplification
315(2)
13.2.2 Transient Isotachophoresis and Transient Pseudo Isotachophoresis
317(1)
13.2.3 Dynamic pH Junction
318(1)
13.2.4 Sweeping
318(1)
13.2.5 Analyte Focusing by Micelle Collapse
319(1)
13.2.6 Micelle to Solvent Stacking
319(1)
13.2.7 Combination of Different Stacking Techniques
320(2)
13.3 Multidimensional Capillary Electrophoresis
322(8)
13.3.1 Comprehensive Two-Dimensional Capillary Electrophoresis
324(2)
13.3.2 Heart-Cutting Two-Dimensional Capillary Electrophoresis
326(1)
13.3.3 Online Sample Concentration Techniques in Two-Dimensional Capillary Electrophoresis
326(4)
13.4 Conclusions
330(5)
Acknowledgment
330(1)
References
330(5)
Chapter 14 Capillary Electrophoresis-Mass Spectrometry for Proteomics
335(18)
Claudia Martelli
Claudia Desiderio
14.1 Introduction
335(4)
14.1.1 Strategies in MS-Based Proteomics
337(2)
14.2 Bottom-Up Proteomics by CE-MS
339(3)
14.3 Top-Down Proteomics by CE-MS
342(3)
14.4 CE-MS Operating Conditions for Proteomic Analysis: Critical Issues and Actual Developments
345(2)
14.5 Conclusions
347(6)
References
348(5)
Chapter 15 Separation of Small-Mass Ions
353(20)
Laurel Jones
Michael C. Breadmore
15.1 Introduction
353(1)
15.2 Comparison With Ion Chromatography
354(3)
15.2.1 Developmental Overview
354(1)
15.2.2 Separation Selectivity
355(1)
15.2.3 Reproducibility
355(1)
15.2.4 Separation Efficiency
356(1)
15.2.5 Sensitivity
356(1)
15.3 Simultaneous Separation of Anions and Cations
357(3)
15.4 Applications
360(8)
15.4.1 Analysis of Metal Ions
360(1)
15.4.2 Forensics
360(5)
15.4.3 Pharmaceutical Analysis
365(1)
15.4.4 Agrochemical Analysis
365(1)
15.4.5 Environmental Monitoring
365(2)
15.4.6 Water Quality Analysis
367(1)
15.4.7 Clinical Diagnostic Applications
367(1)
15.4.8 Food Quality Control
367(1)
15.5 Conclusions
368(5)
References
368(5)
Chapter 16 Capillary Electrophoresis of Herbal uamonyarates
373(24)
Shao-Ping Li
Feng-Qing Yang
Qian Zhang
Jing Zhao
16.1 Introduction
373(1)
16.2 Overview of Herbal Carbohydrates
374(11)
16.2.1 Mono-, Oligo-, and Polysaccharides
374(10)
16.2.2 Glycoconjugates: Glycoproteins, Glycolipids, and Glycosaminoglycans
384(1)
16.3 Sample Preparation of Carbohydrates From Herbs
385(2)
16.4 Separation and Detection of Herbal Carbohydrates in CE Analysis
387(3)
16.4.1 Complexation With Borate
389(1)
16.4.2 Strongly Alkaline Conditions
390(1)
16.5 Applications of CE in Herbal Carbohydrates Analysis
390(1)
16.6 Conclusions
391(6)
Acknowledgments
391(1)
References
392(5)
Chapter 17 Electrophoretic Methods for Characterizing Nanoparticles and Evaluating Their Bio-interactions for Their Further Use as Diagnostic, Imaging, or Therapeutic Tools
397(26)
Gonzalo Ramirez-Garcia
Laura Trapiella-Alfonso
Fanny d'Orlye
Anne Varenne
17.1 Introduction
398(1)
17.2 Fundamentals of Electrokinetic Methods for the Characterization of NPs
398(10)
17.2.1 Relevance of Electrophoresis for the Characterization of NPs in View of Biomedical Applications
398(1)
17.2.2 Electrokinetic Methodologies for Controlling and Optimizing the Synthesis and Functionalization of NPs
399(4)
17.2.3 Evaluating the Behavior of NPs in the Presence of Biologically Relevant Elements
403(4)
17.2.4 Determination of Binding Parameters From Electrophoretic Data
407(1)
17.3 Application of Electromigration Methods to the Analysis of NPs
408(7)
17.3.1 Control and Characterization of NPs Synthesis and Their Physicochemical Properties
408(4)
17.3.2 Nano-Bio Interactions
412(2)
17.3.3 Characterization of NPs as Drug Delivery Systems
414(1)
17.4 Conclusions and Perspectives
415(8)
References
415(8)
Chapter 18 Clinical Chemistry Applications of Capillary Electromigration Methods
423(30)
Chenhua Zhang
David S. Hage
18.1 Introduction
423(1)
18.2 Protein Profiling
424(1)
18.3 Hematology
425(1)
18.4 Enzymology
426(1)
18.5 Immunology and Immunoassays
427(3)
18.6 Endocrinology
430(2)
18.7 Therapeutic Drug Monitoring
432(3)
18.8 Toxicology
435(3)
18.9 Tumor Biomarkers
438(2)
18.10 DNA Diagnostics
440(2)
18.11 Conclusion
442(11)
Acknowledgments
442(1)
References
442(11)
Chapter 19 Biopharmaceutical Applications of Capillary Electromigration Methods
453(28)
Rabah Gahoual
Jeremie Giorgetti
Alain Beck
Emmanuelle Leize-Wagner
Yannis-Nicolas Francois
19.1 Introduction: Biopharmaceutical Products Analysis
454(1)
19.2 Capillary Gel Electrophoresis
455(5)
19.2.1 Method Description
455(1)
19.2.2 Example of a Practical Protocol
456(1)
19.2.3 Applications
457(3)
19.3 Capillary Isoelectric Electrophoretic Focusing
460(4)
19.3.1 Method Description
460(1)
19.3.2 Example of Practical Protocols
461(2)
19.3.3 Applications
463(1)
19.4 Capillary Electrophoresis
464(4)
19.4.1 Method Description
464(1)
19.4.2 Example of Practical Protocol
465(1)
19.4.3 Applications
466(2)
19.5 CE Hyphenated With Mass Spectrometry
468(6)
19.5.1 Method Description
468(1)
19.5.2 Example of Practical Protocol
469(1)
19.5.3 Applications
470(4)
19.6 Conclusion
474(7)
References
474(7)
Chapter 20 Neuroscience Applications of Capillary Electrophoretic Methods
481(30)
Elena Sanchez-Lopez
Maria Luisa Marina
20.1 Introduction
481(5)
20.1.1 Microdialysis and Other Sampling Strategies in CE
482(1)
20.1.2 CE-Based Metabolomics
483(1)
20.1.3 Single-Cell Analysis by CE
484(1)
20.1.4 Role of D-Enantiomers in Neurotransmission
485(1)
20.2 Applications of CE to Neuroscience
486(17)
20.2.1 Addiction
494(1)
20.2.2 Depression
495(1)
20.2.3 Epilepsy
496(1)
20.2.4 Ischemic Stroke
497(2)
20.2.5 Neurodegeneration
499(1)
20.2.6 Pain
499(1)
20.2.7 Miscellaneous Applications
500(3)
20.3 Conclusions and Future Trends
503(8)
Acknowledgments
504(1)
References
504(7)
Chapter 21 Food Safety Applications of Capillary Electromigration Methods
511(36)
Francisco J. Lara
David Moreno-Gonzalez
Maykel Hernandez-Mesa
Ana M. Garcia-Campana
21.1 Introduction
511(1)
21.2 Veterinary Drugs
512(8)
21.3 Pesticides
520(5)
21.4 Natural Toxins
525(4)
21.5 Other Contaminants and Pollutants
529(3)
21.6 Allergens
532(2)
21.7 Conclusions
534(13)
Acknowledgments
534(1)
References
534(13)
Chapter 22 Application of Capillary Electromigration Methods for Physicochemical Measurements
547(46)
Sille Stepanova
Vaclav Kasicka
22.1 Introduction
548(1)
22.2 Determination of Acidity Constants, Ionic Mobilities, and Stokes Radii by CE
549(8)
22.2.1 Nonlinear Regression Analysis of pH Dependence of Effective Mobility
549(7)
22.2.2 Internal Standard-Based Method
556(1)
22.3 Determination of Effective Charges
557(3)
22.3.1 Calculation from pKa Values
557(1)
22.3.2 Determination by CE
557(2)
22.3.3 Determination by CITP
559(1)
22.4 Determination of Relative Molecular Masses of Proteins by CGE
560(1)
22.5 Determination of the Isoelectric Points of Proteins and Peptides by CIEF and CE
561(1)
22.6 Semiempirical Relations Between Electrophoretic Mobility of Peptides and Proteins and Their Charge/Size Ratio
562(2)
22.7 Determination of Binding Constants of Complexes by CE Methods
564(7)
22.7.1 Mobility Shift ACE
564(3)
22.7.2 Multiple-Injection ACE
567(1)
22.7.3 Partial Filling ACE
568(1)
22.7.4 Preequilibrated CE
569(1)
22.7.5 Hummel-Dreyer and Vacancy Peak Methods
569(1)
22.7.6 Frontal Analysis and Continuous Frontal Analysis CE
569(1)
22.7.7 Kinetic Capillary Electrophoresis
570(1)
22.8 Determination of Partition Constants by MEKC and MEEKC
571(3)
22.9 Determination of Diffusion Coefficients
574(2)
22.10 Determination of Rate Constants for Chemical and Enzymatic Reactions
576(6)
22.11 Conclusions
582(11)
Acknowledgments
582(1)
References
582(11)
Index 593
Colin F. Poole was born and educated in the United Kingdom receiving a B.Sc. in Chemistry from the University of Leeds (1971) followed by graduate studies at the University of Bristol, MSc. in analytical chemistry (1972), and Ph.D. with Prof. E. D. Morgan at the University of Keele (1975) on the analysis of insect moulting hormones. Since 1980 he has been at the Department of Chemistry, Wayne State University, Detroit, Michigan, USA , except for 1995-1996, spent as the Governors Lecturer and Professor of Analytical Chemistry at Imperial College of Science, Technology & Medicine, London, in the United Kingdom. He is a former Science Advisor to the US Food and Drug Administration, a position he occupied for 25 years. Professor Poole has broad interests in the separation and detection of small molecules in biological, environmental, and food samples using a range of sample preparation, chromatographic and data analysis tools. He is the co-author of over 400 papers, 20 books, an editor of Journal of Chromatography A and a member of the editorial boards of 5 other analytical chemistry journals. .