Muutke küpsiste eelistusi

Cauchy Transform, Potential Theory and Conformal Mapping 2nd edition [Kõva köide]

(Purdue University, USA)
  • Formaat: Hardback, 209 pages, kõrgus x laius: 234x156 mm, kaal: 450 g
  • Ilmumisaeg: 23-Nov-2015
  • Kirjastus: Chapman & Hall/CRC
  • ISBN-10: 1498727204
  • ISBN-13: 9781498727204
Teised raamatud teemal:
  • Formaat: Hardback, 209 pages, kõrgus x laius: 234x156 mm, kaal: 450 g
  • Ilmumisaeg: 23-Nov-2015
  • Kirjastus: Chapman & Hall/CRC
  • ISBN-10: 1498727204
  • ISBN-13: 9781498727204
Teised raamatud teemal:
The Cauchy Transform, Potential Theory and Conformal Mapping explores the most central result in all of classical function theory, the Cauchy integral formula, in a new and novel way based on an advance made by Kerzman and Stein in 1976.

The book provides a fast track to understanding the Riemann Mapping Theorem. The Dirichlet and Neumann problems for the Laplace operator are solved, the Poisson kernel is constructed, and the inhomogenous Cauchy-Reimann equations are solved concretely and efficiently using formulas stemming from the Kerzman-Stein result.

These explicit formulas yield new numerical methods for computing the classical objects of potential theory and conformal mapping, and the book provides succinct, complete explanations of these methods.

Four new chapters have been added to this second edition: two on quadrature domains and another two on complexity of the objects of complex analysis and improved Riemann mapping theorems.

The book is suitable for pure and applied math students taking a beginning graduate-level topics course on aspects of complex analysis as well as physicists and engineers interested in a clear exposition on a fundamental topic of complex analysis, methods, and their application.
Preface vii
Table of symbols
xi
1 Introduction
1(2)
2 The improved Cauchy integral formula
3(6)
3 The Cauchy transform
9(4)
4 The Hardy space, Szego projection, and Kerzman-Stein formula
13(4)
5 The Kerzman-Stein operator and kernel
17(4)
6 The classical definition of the Hardy space
21(6)
7 The Szego kernel function
27(6)
8 The Riemann mapping function
33(2)
9 A density lemma and consequences
35(8)
10 Solution of the Dirichlet problem in simply connected domains
43(4)
11 The case of real analytic boundary
47(4)
12 The transformation law for the Szego kernel
51(8)
13 The Ahlfors map of a multiply connected domain
59(6)
14 The Dirichlet problem in multiply connected domains
65(4)
15 The Bergman space
69(8)
16 Proper holomorphic mappings and the Bergman projection
77(10)
17 The Solid Cauchy transform
87(6)
18 The classical Neumann problem
93(4)
19 Harmonic measure and the Szego kernel
97(10)
20 The Neumann problem in multiply connected domains
107(4)
21 The Dirichlet problem again
111(2)
22 Area quadrature domains
113(10)
23 Arc length quadrature domains
123(8)
24 The Hilbert transform
131(4)
25 The Bergman kernel and the Szego kernel
135(6)
26 Pseudo-local property of the Cauchy transform
141(8)
27 Zeroes of the Szego kernel
149(4)
28 The Kerzman-Stein integral equation
153(6)
29 Local boundary behavior of holomorphic mappings
159(6)
30 The dual space of A∞(Ω)
165(12)
31 The Green's function and the Bergman kernel
177(6)
32 Zeroes of the Bergman kernel
183(4)
33 Complexity in complex analysis
187(4)
34 Area quadrature domains and the double
191(8)
A The Cauchy-Kovalevski theorem for the Cauchy-Riemann operator
197(2)
Bibliographic Notes 199(4)
Bibliography 203(4)
Index 207
Steven R. Bell, PhD, professor, Department of Mathematics, Purdue University, West Lafayette, Indiana, USA, and Fellow of the AMS