Preface |
|
xi | |
|
|
1 | (20) |
|
|
1 | (7) |
|
1.1.1 Self-reproducing systems |
|
|
1 | (2) |
|
1.1.2 Simple dynamical systems |
|
|
3 | (1) |
|
1.1.3 A synthetic universe |
|
|
4 | (1) |
|
1.1.4 Modeling physical systems |
|
|
5 | (2) |
|
1.1.5 Beyond the cellular automata dynamics: lattice Boltzmann methods and multiparticle models |
|
|
7 | (1) |
|
1.2 A simple cellular automation: the parity rule |
|
|
8 | (4) |
|
|
12 | (6) |
|
|
12 | (2) |
|
|
14 | (1) |
|
1.3.3 Boundary conditions |
|
|
15 | (1) |
|
|
16 | (2) |
|
|
18 | (3) |
|
2 Cellular automata modeling |
|
|
21 | (45) |
|
2.1 Why cellular automata are useful in physics |
|
|
21 | (7) |
|
2.1.1 Cellular automata as simple dynamical systems |
|
|
21 | (3) |
|
2.1.2 Cellular automata as spatially extended systems |
|
|
24 | (2) |
|
2.1.3 Several levels of reality |
|
|
26 | (1) |
|
2.1.4 A fictitious microscopic world |
|
|
27 | (1) |
|
2.2 Modeling of simple systems: a sampler of rules |
|
|
28 | (33) |
|
2.2.1 The rule 184 as a model for surface growth |
|
|
29 | (1) |
|
2.2.2 Probabilistic cellular automata rules |
|
|
29 | (4) |
|
|
33 | (4) |
|
|
37 | (1) |
|
|
38 | (4) |
|
|
42 | (4) |
|
|
46 | (5) |
|
2.2.8 The road traffic rule |
|
|
51 | (5) |
|
2.2.9 The solid body motion rule |
|
|
56 | (5) |
|
|
61 | (5) |
|
3 Statistical mechanics of lattice gas |
|
|
66 | (72) |
|
3.1 The one-dimensional diffusion automaton |
|
|
66 | (9) |
|
3.1.1 A random walk automaton |
|
|
67 | (1) |
|
3.1.2 The macroscopic limit |
|
|
68 | (3) |
|
3.1.3 The Chapman--Enskog expansion |
|
|
71 | (3) |
|
3.1.4 Spurious invariants |
|
|
74 | (1) |
|
|
75 | (37) |
|
|
75 | (3) |
|
|
78 | (2) |
|
3.2.3 From microdynamics to macrodynamics |
|
|
80 | (25) |
|
3.2.4 The collision matrix and semi-detailed balance |
|
|
105 | (2) |
|
|
107 | (3) |
|
3.2.6 Examples of fluid flows |
|
|
110 | (2) |
|
3.2.7 Three-dimensional lattice gas models |
|
|
112 | (1) |
|
3.3 Thermal lattice gas automata |
|
|
112 | (5) |
|
|
112 | (3) |
|
3.3.2 Thermo-hydrodynamical equations |
|
|
115 | (1) |
|
3.3.3 Thermal FHP lattice gases |
|
|
116 | (1) |
|
3.4 The staggered invariants |
|
|
117 | (5) |
|
3.5 Lattice Boltzmann models |
|
|
122 | (13) |
|
|
122 | (3) |
|
3.5.2 A simple two-dimensional lattice Boltzmann fluid |
|
|
125 | (9) |
|
3.5.3 Lattice Boltzmann flows |
|
|
134 | (1) |
|
|
135 | (3) |
|
|
138 | (40) |
|
|
138 | (1) |
|
|
139 | (11) |
|
4.2.1 Microdynamics of the diffusion process |
|
|
140 | (7) |
|
4.2.2 The mean square displacement and the Green--Kubo formula |
|
|
147 | (2) |
|
4.2.3 The three-dimensional case |
|
|
149 | (1) |
|
|
150 | (13) |
|
4.3.1 The stationary source--sink problem |
|
|
151 | (2) |
|
4.3.2 Telegraphist equation |
|
|
153 | (4) |
|
4.3.3 The discrete Boltzmann equation in 2D |
|
|
157 | (2) |
|
4.3.4 Semi-infinite strip |
|
|
159 | (4) |
|
4.4 Applications of the diffusion rule |
|
|
163 | (12) |
|
4.4.1 Study of the diffusion front |
|
|
163 | (3) |
|
4.4.2 Diffusion-limited aggregation |
|
|
166 | (5) |
|
4.4.3 Diffusion-limited surface adsorption |
|
|
171 | (4) |
|
|
175 | (3) |
|
5 Reaction-diffusion processes |
|
|
178 | (54) |
|
|
178 | (1) |
|
5.2 A model for excitable media |
|
|
179 | (2) |
|
5.3 Lattice gas microdynamics |
|
|
181 | (6) |
|
5.3.1 From microdynamics to rate equations |
|
|
184 | (3) |
|
|
187 | (6) |
|
5.4.1 The homogeneous A + B --> (Phi) process |
|
|
188 | (2) |
|
5.4.2 Cellular automata or lattice Boltzmann modeling |
|
|
190 | (1) |
|
|
191 | (2) |
|
5.5 Reaction front in the A + B --> (Phi) process |
|
|
193 | (5) |
|
5.5.1 The scaling solution |
|
|
195 | (3) |
|
|
198 | (11) |
|
5.6.1 What are Liesegang patterns |
|
|
198 | (3) |
|
5.6.2 The lattice gas automata model |
|
|
201 | (1) |
|
5.6.3 Cellular automata bands and rings |
|
|
202 | (4) |
|
5.6.4 The lattice Boltzmann model |
|
|
206 | (2) |
|
5.6.5 Lattice Boltzmann rings and spirals |
|
|
208 | (1) |
|
|
209 | (10) |
|
5.7.1 Multiparticle diffusion model |
|
|
210 | (2) |
|
5.7.2 Numerical implementation |
|
|
212 | (2) |
|
5.7.3 The reaction algorithm |
|
|
214 | (2) |
|
5.7.4 Rate equation approximation |
|
|
216 | (1) |
|
|
217 | (2) |
|
5.8 From cellular automata to field theory |
|
|
219 | (9) |
|
|
228 | (4) |
|
6 Nonequilibrium phase transitions |
|
|
232 | (24) |
|
|
232 | (2) |
|
6.2 Simple interacting particle systems |
|
|
234 | (8) |
|
|
234 | (7) |
|
6.2.2 The contact process model (CPM) |
|
|
241 | (1) |
|
6.3 Simple models of catalytic surfaces |
|
|
242 | (7) |
|
|
242 | (6) |
|
6.3.2 More complicated models |
|
|
248 | (1) |
|
|
249 | (5) |
|
6.4.1 Localization of the critical point |
|
|
250 | (2) |
|
6.4.2 Critical exponents and universality classes |
|
|
252 | (2) |
|
|
254 | (2) |
|
7 Other models and applications |
|
|
256 | (57) |
|
|
256 | (24) |
|
7.1.1 One-dimensional waves |
|
|
256 | (2) |
|
7.1.2 Two-dimensional waves |
|
|
258 | (9) |
|
7.1.3 The lattice BGK formulation of the wave model |
|
|
267 | (11) |
|
7.1.4 An application to wave propagation in urban environments |
|
|
278 | (2) |
|
7.2 Wetting, spreading and two-phase fluids |
|
|
280 | (18) |
|
|
280 | (2) |
|
7.2.2 The problem of wetting |
|
|
282 | (2) |
|
7.2.3 An FHP model with surface tension |
|
|
284 | (3) |
|
7.2.4 Mapping of the hexagonal lattice on a square lattice |
|
|
287 | (2) |
|
7.2.5 Simulations of wetting phenomena |
|
|
289 | (3) |
|
|
292 | (1) |
|
7.2.7 An Ising cellular automata fluid |
|
|
293 | (5) |
|
|
298 | (7) |
|
7.3.1 The multiparticle collision rule |
|
|
299 | (3) |
|
7.3.2 Multiparticle fluid simulations |
|
|
302 | (2) |
|
7.4 Modeling snow transport by wind |
|
|
305 | (8) |
|
|
305 | (3) |
|
|
308 | (4) |
|
7.4.3 Simulations of snow transport |
|
|
312 | (1) |
References |
|
313 | (14) |
Glossary |
|
327 | (10) |
Index |
|
337 | |