Preface |
|
xix | |
Acknowledgments |
|
xxi | |
Author |
|
xxiii | |
Chapter 1 Ceramic Fabrication Processes: An Introductory Overview |
|
1 | (18) |
|
|
1 | (1) |
|
1.2 Ceramic Fabrication Processes |
|
|
2 | (3) |
|
1.3 Production of Ceramics from Powders: An Overview |
|
|
5 | (10) |
|
1.3.1 Powder Preparation and Characterization |
|
|
7 | (1) |
|
1.3.2 Powder Consolidation |
|
|
8 | (1) |
|
|
9 | (3) |
|
1.3.4 Ceramic Microstructures |
|
|
12 | (3) |
|
1.4 Case Study in Processing: Fabrication of Al2O3 from Powders |
|
|
15 | (2) |
|
|
17 | (1) |
|
|
17 | (2) |
Chapter 2 Synthesis and Preparation of Powders: Mechanical Methods |
|
19 | (16) |
|
|
19 | (1) |
|
2.2 Powder Characteristics |
|
|
20 | (2) |
|
2.2.1 Desirable Powder Characteristics for Advanced Ceramics |
|
|
21 | (1) |
|
2.3 Powder Preparation by Mechanical Methods |
|
|
22 | (1) |
|
2.4 High-Compression Roller Mills |
|
|
23 | (1) |
|
|
24 | (1) |
|
|
25 | (5) |
|
2.6.1 Tumbling Ball Mills |
|
|
25 | (4) |
|
|
25 | (1) |
|
|
26 | (1) |
|
2.6.1.3 Particle Parameters |
|
|
26 | (1) |
|
2.6.1.4 Empirical Relationship for Ball Milling |
|
|
27 | (1) |
|
2.6.1.5 Practical Considerations |
|
|
28 | (1) |
|
2.6.2 Vibratory Ball Mills |
|
|
29 | (1) |
|
|
29 | (1) |
|
2.6.4 Planetary Ball Mills |
|
|
29 | (1) |
|
2.7 High-Energy Ball Milling |
|
|
30 | (2) |
|
|
32 | (1) |
|
|
32 | (1) |
|
|
32 | (3) |
Chapter 3 Powder Synthesis by Chemical Methods |
|
35 | (44) |
|
|
35 | (1) |
|
3.2 Solid-State Reactions |
|
|
35 | (11) |
|
|
35 | (6) |
|
3.2.2 Reaction between Solids |
|
|
41 | (4) |
|
|
45 | (1) |
|
3.3 Precipitation from Liquid Solutions |
|
|
46 | (21) |
|
3.3.1 Principles of Precipitation from Solution |
|
|
46 | (6) |
|
3.3.1.1 Nucleation of Particles |
|
|
46 | (2) |
|
3.3.1.2 Growth of Particles |
|
|
48 | (2) |
|
3.3.1.3 Controlled Particle Size Distribution |
|
|
50 | (1) |
|
3.3.1.4 Particle Growth by Aggregation |
|
|
51 | (1) |
|
3.3.1.5 Particle Growth by Ostwald Ripening |
|
|
52 | (1) |
|
3.3.2 Methods for Preparing Powders by Hydrolysis |
|
|
52 | (10) |
|
3.3.2.1 Hydrolysis of Solutions of Metal Alkoxides |
|
|
52 | (2) |
|
3.3.2.2 Hydrolysis of Solutions of Metal Salts |
|
|
54 | (3) |
|
3.3.2.3 Coprecipitation of Complex Oxides |
|
|
57 | (1) |
|
3.3.2.4 Precipitation under Hydrothermal Conditions |
|
|
58 | (1) |
|
3.3.2.5 Heterogeneous Precipitation to Form Coated Particles |
|
|
59 | (3) |
|
3.3.2.6 Industrial Preparation of Powders by Precipitation from Solution |
|
|
62 | (1) |
|
3.3.3 Precipitation Methods Based on Evaporation of the Liquid |
|
|
62 | (5) |
|
|
62 | (1) |
|
|
63 | (3) |
|
3.3.3.3 Spray Drying of Suspensions |
|
|
66 | (1) |
|
|
67 | (1) |
|
|
67 | (2) |
|
|
67 | (1) |
|
|
68 | (1) |
|
|
68 | (1) |
|
3.5.4 Glycine Nitrate Process |
|
|
68 | (1) |
|
3.6 Nonaqueous Liquid Reaction |
|
|
69 | (1) |
|
3.7 Vapor-Phase Reactions |
|
|
69 | (4) |
|
|
70 | (1) |
|
3.7.2 Reaction between Gases |
|
|
71 | (2) |
|
|
73 | (1) |
|
|
73 | (2) |
|
|
75 | (4) |
Chapter 4 Synthesis of Ceramic Nanoparticles |
|
79 | (10) |
|
|
79 | (1) |
|
4.2 Methods for Synthesizing Ceramic Nanoparticles |
|
|
79 | (1) |
|
|
79 | (1) |
|
4.4 Solid-Vapor-Solid Methods |
|
|
80 | (2) |
|
|
82 | (1) |
|
4.6 Liquid-Vapor-Solid Methods |
|
|
83 | (2) |
|
|
85 | (2) |
|
|
87 | (1) |
|
|
87 | (2) |
Chapter 5 Powder Characterization |
|
89 | (44) |
|
|
89 | (1) |
|
5.2 Physical Characterization |
|
|
89 | (25) |
|
|
89 | (3) |
|
5.2.1.1 Primary Particles |
|
|
89 | (1) |
|
|
90 | (1) |
|
|
91 | (1) |
|
|
91 | (1) |
|
|
91 | (1) |
|
|
92 | (1) |
|
|
92 | (1) |
|
5.2.2 Particle Size and Particle Size Distribution |
|
|
92 | (6) |
|
5.2.2.1 Definition of Particle Size |
|
|
92 | (1) |
|
5.2.2.2 Average Particle Size |
|
|
93 | (2) |
|
5.2.2.3 Representation of Particle Size Data |
|
|
95 | (3) |
|
|
98 | (1) |
|
5.2.4 Measurement of Particle Size and Size Distribution |
|
|
98 | (8) |
|
|
98 | (1) |
|
|
99 | (2) |
|
|
101 | (1) |
|
5.2.4.4 Electrical Sensing Zone Techniques (Coulter Counter) |
|
|
102 | (1) |
|
|
103 | (2) |
|
5.2.4.6 X-Ray Line Broadening |
|
|
105 | (1) |
|
|
106 | (2) |
|
5.2.6 Porosity of Particles |
|
|
108 | (6) |
|
5.2.6.1 Gas Adsorption (Capillary Condensation) |
|
|
109 | (2) |
|
5.2.6.2 Mercury Porosimetry |
|
|
111 | (2) |
|
|
113 | (1) |
|
|
114 | (5) |
|
5.3.1 Optical Atomic Spectroscopy: Atomic Absorption and Atomic Emission |
|
|
114 | (2) |
|
5.3.2 X-Ray Fluorescence Spectroscopy |
|
|
116 | (2) |
|
5.3.3 Energy-Dispersive X-Ray Analysis |
|
|
118 | (1) |
|
5.3.4 Fourier Transform Infrared Analysis |
|
|
118 | (1) |
|
5.4 Crystal Structure and Phase Composition |
|
|
119 | (1) |
|
5.5 Surface Characterization |
|
|
120 | (9) |
|
|
122 | (1) |
|
|
123 | (11) |
|
5.5.2.1 Auger Electron Spectroscopy (AES) |
|
|
123 | (2) |
|
5.5.2.2 X-Ray Photoelectron Spectroscopy (XPS) |
|
|
125 | (1) |
|
5.5.2.3 Secondary Ion Mass Spectrometry (SIMS) |
|
|
126 | (3) |
|
|
129 | (1) |
|
|
129 | (2) |
|
|
131 | (2) |
Chapter 6 Science of Colloidal Processing |
|
133 | (42) |
|
|
133 | (1) |
|
6.2 Types of Colloidal Suspensions |
|
|
133 | (1) |
|
6.3 Attractive Surface Forces |
|
|
134 | (6) |
|
6.3.1 Van der Waals Forces between Atoms and Molecules |
|
|
134 | (2) |
|
6.3.2 Van der Waals Forces between Macroscopic Bodies |
|
|
136 | (1) |
|
|
137 | (1) |
|
6.3.4 Effect of Intervening Medium |
|
|
138 | (2) |
|
6.4 Stabilization of Colloidal Suspensions |
|
|
140 | (1) |
|
6.5 Electrostatic Stabilization |
|
|
141 | (16) |
|
6.5.1 Development of Charges on Oxide Particles in Water |
|
|
141 | (3) |
|
6.5.1.1 Isomorphic Substitution |
|
|
141 | (1) |
|
6.5.1.2 Adsorption of Ions from Solution |
|
|
142 | (2) |
|
6.5.2 Origins of Electrical Double Layer |
|
|
144 | (2) |
|
6.5.3 Isolated Double Layer |
|
|
146 | (3) |
|
|
149 | (1) |
|
6.5.5 Repulsion between Two Double Layers |
|
|
149 | (2) |
|
6.5.6 Stability of Electrostatically Stabilized Colloids |
|
|
151 | (3) |
|
6.5.6.1 Factors Controlling the Stability of Suspensions |
|
|
153 | (1) |
|
6.5.7 Kinetics of Flocculation |
|
|
154 | (1) |
|
6.5.8 Electrokinetic Phenomena |
|
|
155 | (2) |
|
|
155 | (1) |
|
6.5.8.2 Significance of C Potential |
|
|
156 | (1) |
|
|
157 | (7) |
|
6.6.1 Adsorption of Polymers from Solution |
|
|
158 | (1) |
|
6.6.2 Origins of Steric Stabilization |
|
|
159 | (2) |
|
6.6.3 Effect of Solvent and Temperature |
|
|
161 | (1) |
|
6.6.4 Stability of Sterically Stabilized Suspensions |
|
|
162 | (1) |
|
6.6.5 Stabilization by Polymers in Free Solution |
|
|
163 | (1) |
|
6.7 Electrosteric Stabilization |
|
|
164 | (4) |
|
6.7.1 Dissociation of Polyelectrolytes in Solution |
|
|
165 | (1) |
|
6.7.2 Adsorption of Polyelectrolytes from Solution |
|
|
166 | (1) |
|
6.7.3 Stability of Electrosterically Stabilized Suspensions |
|
|
167 | (1) |
|
6.8 Structure of Consolidated Colloids |
|
|
168 | (2) |
|
|
170 | (1) |
|
|
170 | (2) |
|
|
172 | (3) |
Chapter 7 Rheology of Colloidal Suspensions, Slurries, and Pastes |
|
175 | (18) |
|
|
175 | (1) |
|
7.2 Types of Rheological Behavior |
|
|
175 | (4) |
|
7.2.1 Viscous Flow Behavior |
|
|
175 | (3) |
|
7.2.2 Viscoelastic Behavior |
|
|
178 | (1) |
|
7.3 Rheological Measurement |
|
|
179 | (1) |
|
7.4 Factors Influencing the Rheology of Colloidal Suspensions |
|
|
180 | (10) |
|
7.4.1 Interparticle Forces |
|
|
180 | (6) |
|
7.4.1.1 Hard Sphere Systems |
|
|
180 | (3) |
|
7.4.1.2 Soft Sphere Systems |
|
|
183 | (1) |
|
7.4.1.3 Flocculated Systems |
|
|
183 | (1) |
|
7.4.1.4 Effect of Particle Interactions on the Viscosity |
|
|
183 | (3) |
|
7.4.2 Particle Concentration |
|
|
186 | (1) |
|
7.4.3 Particle Size and Particle Size Distribution |
|
|
186 | (2) |
|
7.4.4 Particle Morphology |
|
|
188 | (1) |
|
|
188 | (2) |
|
|
190 | (1) |
|
|
190 | (1) |
|
|
190 | (3) |
Chapter 8 Processing Additives |
|
193 | (20) |
|
|
193 | (1) |
|
|
193 | (1) |
|
|
194 | (3) |
|
8.3.1 Selection of a Solvent |
|
|
195 | (2) |
|
|
197 | (5) |
|
8.4.1 Inorganic Acid Salts |
|
|
197 | (1) |
|
|
198 | (3) |
|
8.4.3 Low to Medium Molecular Weight Polymers |
|
|
201 | (1) |
|
|
202 | (6) |
|
|
204 | (1) |
|
8.5.2 Synthetic Organic Binders |
|
|
204 | (1) |
|
8.5.3 Natural Organic Binders |
|
|
204 | (2) |
|
8.5.4 Selection of a Binder |
|
|
206 | (2) |
|
|
208 | (2) |
|
|
210 | (1) |
|
|
211 | (1) |
|
|
211 | (1) |
|
|
212 | (1) |
Chapter 9 Granulation, Mixing, and Packing of Particles |
|
213 | (28) |
|
|
213 | (1) |
|
9.2 Granulation of Particles |
|
|
214 | (5) |
|
9.2.1 Desirable Characteristics of Granules |
|
|
214 | (1) |
|
9.2.2 Preparation of Granules |
|
|
215 | (1) |
|
|
215 | (1) |
|
9.2.4 Factors Controlling the Characteristics of Spray-Dried Granules |
|
|
216 | (2) |
|
9.2.5 Spray Freeze Drying |
|
|
218 | (1) |
|
9.3 Mixing of Particulate Solids |
|
|
219 | (8) |
|
9.3.1 Mixing and Segregation Mechanisms |
|
|
219 | (2) |
|
9.3.2 Mixture Composition and Quality |
|
|
221 | (1) |
|
9.3.3 Statistical Methods |
|
|
222 | (2) |
|
9.3.3.1 Mixture Composition |
|
|
222 | (1) |
|
9.3.3.2 Standard Deviation and Variance |
|
|
222 | (1) |
|
9.3.3.3 Theoretical Limits of Standard Deviation |
|
|
223 | (1) |
|
|
224 | (1) |
|
9.3.4 Measurement Techniques |
|
|
224 | (1) |
|
|
225 | (2) |
|
|
227 | (10) |
|
9.4.1 Regular Packing of Monosize Spheres |
|
|
227 | (2) |
|
9.4.2 Random Packing of Particles |
|
|
229 | (6) |
|
9.4.2.1 Monosize Particles |
|
|
230 | (1) |
|
9.4.2.2 Bimodal Mixtures of Spheres |
|
|
230 | (4) |
|
9.4.2.3 Binary Mixtures of Nonspherical Particles |
|
|
234 | (1) |
|
9.4.2.4 Ternary and Multiple Mixtures |
|
|
235 | (1) |
|
9.4.3 Continuous Particle Size Distributions |
|
|
235 | (2) |
|
|
237 | (1) |
|
|
238 | (1) |
|
|
239 | (2) |
Chapter 10 Forming of Ceramics: Conventional Methods |
|
241 | (44) |
|
|
241 | (1) |
|
10.2 Dry or Semidry Pressing |
|
|
241 | (9) |
|
|
242 | (6) |
|
|
242 | (1) |
|
10.2.1.2 Compaction of Particles |
|
|
242 | (3) |
|
10.2.1.3 Compaction of Granules |
|
|
245 | (3) |
|
10.2.1.4 Ejection of Powder Compact |
|
|
248 | (1) |
|
10.2.1.5 Compaction Defects |
|
|
248 | (1) |
|
10.2.2 Isostatic Compaction |
|
|
248 | (2) |
|
10.3 Suspension-Based Techniques |
|
|
250 | (23) |
|
|
251 | (4) |
|
10.3.1.1 Slip Casting Mechanics |
|
|
252 | (1) |
|
10.3.1.2 Effect of Permeability of Cast |
|
|
253 | (1) |
|
10.3.1.3 Effect of Mold Parameters |
|
|
254 | (1) |
|
10.3.1.4 Effect of Slurry Parameters |
|
|
254 | (1) |
|
10.3.1.5 Microstructural Defects in Slip-Cast Green Articles |
|
|
255 | (1) |
|
|
255 | (2) |
|
|
257 | (4) |
|
10.3.3.1 Slurry Preparation |
|
|
258 | (2) |
|
10.3.3.2 Tape Casting Process |
|
|
260 | (1) |
|
10.3.3.3 Microstructural Flaws in Tape-Cast Sheets |
|
|
261 | (1) |
|
10.3.4 Centrifugal Consolidation |
|
|
261 | (1) |
|
10.3.5 Dip and Spin Coating |
|
|
262 | (2) |
|
10.3.6 Electrophoretic Deposition |
|
|
264 | (4) |
|
10.3.6.1 Kinetics and Mechanisms of Deposition |
|
|
265 | (1) |
|
10.3.6.2 Applications of Electrophoretic Deposition |
|
|
266 | (1) |
|
10.3.6.3 Electrophoretic Deposition on Porous Nonconductors |
|
|
267 | (1) |
|
|
268 | (1) |
|
|
269 | (2) |
|
10.3.8.1 Monomers and Polymerization |
|
|
270 | (1) |
|
|
271 | (1) |
|
10.3.9 Direct Coagulation Casting |
|
|
271 | (1) |
|
10.3.10 Aqueous Injection Molding |
|
|
271 | (2) |
|
10.4 Plastic Forming Methods |
|
|
273 | (8) |
|
|
273 | (3) |
|
10.4.1.1 Extrusion Mechanics |
|
|
275 | (1) |
|
10.4.1.2 Extrusion Defects |
|
|
276 | (1) |
|
|
276 | (1) |
|
|
277 | (9) |
|
10.4.3.1 Powder Characteristics |
|
|
278 | (1) |
|
|
278 | (1) |
|
10.4.3.3 Powder-Binder Mixture |
|
|
278 | (1) |
|
|
279 | (2) |
|
|
281 | (1) |
|
|
281 | (1) |
|
|
282 | (3) |
Chapter 11 Additive Manufacturing of Ceramics |
|
285 | (14) |
|
|
285 | (1) |
|
|
286 | (2) |
|
11.2.1 Selective Laser Sintering |
|
|
286 | (1) |
|
11.2.2 Three-Dimensional Printing |
|
|
287 | (1) |
|
11.3 Particle-Filled Polymer Methods |
|
|
288 | (2) |
|
11.3.1 Fused Deposition Modeling |
|
|
288 | (1) |
|
11.3.2 Laminated Object Manufacturing |
|
|
289 | (1) |
|
11.4 Suspension-Based Methods |
|
|
290 | (6) |
|
|
290 | (1) |
|
|
291 | (2) |
|
|
293 | (2) |
|
11.4.4 Freeze Extrusion Fabrication |
|
|
295 | (1) |
|
|
296 | (1) |
|
|
296 | (1) |
|
|
297 | (2) |
Chapter 12 Drying, Debinding, and Microstructural Characterization of Green Articles |
|
299 | (32) |
|
|
299 | (1) |
|
12.2 Drying of Granular Ceramics |
|
|
300 | (15) |
|
12.2.1 Drying of Drops of a Suspension on a Surface |
|
|
300 | (1) |
|
12.2.2 Drying of Adherent Coatings |
|
|
301 | (4) |
|
12.2.2.1 Measurement of Drying Stress |
|
|
301 | (3) |
|
12.2.2.2 Cracking during Drying of Adherent Coatings |
|
|
304 | (1) |
|
12.2.3 Drying of Three-Dimensional Solids |
|
|
305 | (9) |
|
12.2.3.1 Stages of Drying |
|
|
305 | (5) |
|
12.2.3.2 Moisture Distribution and Movement |
|
|
310 | (2) |
|
|
312 | (1) |
|
12.2.3.4 Warping and Cracking |
|
|
313 | (1) |
|
12.2.3.5 Avoidance of Warping and Cracking |
|
|
314 | (1) |
|
|
314 | (1) |
|
12.3 Binder Removal (Debinding) |
|
|
315 | (10) |
|
12.3.1 Extraction of Binder by Capillary Flow |
|
|
316 | (1) |
|
12.3.2 Solvent Extraction |
|
|
317 | (1) |
|
12.3.3 Supercritical Fluid Extraction |
|
|
317 | (1) |
|
|
317 | (7) |
|
12.3.4.1 Binder Degradation |
|
|
318 | (1) |
|
12.3.4.2 Stages of Thermal Debinding |
|
|
318 | (2) |
|
12.3.4.3 Binder Redistribution |
|
|
320 | (1) |
|
12.3.4.4 Effect of Ceramic Surface Interactions |
|
|
321 | (2) |
|
12.3.4.5 Models for Thermal Debinding |
|
|
323 | (1) |
|
12.3.5 Thermal Debinding Process Design |
|
|
324 | (1) |
|
12.4 Green Microstructures and Their Characterization |
|
|
325 | (2) |
|
|
327 | (1) |
|
|
327 | (1) |
|
|
328 | (3) |
Chapter 13 Principles of Sintering and Microstructural Development |
|
331 | (66) |
|
|
331 | (3) |
|
13.1.1 Types of Sintering |
|
|
331 | (1) |
|
13.1.2 Measurement of Sintering |
|
|
332 | (2) |
|
13.1.3 Analysis of Sintering |
|
|
334 | (1) |
|
13.2 Solid-State Sintering |
|
|
334 | (17) |
|
13.2.1 Driving Force for Sintering |
|
|
334 | (1) |
|
13.2.2 Effects of Surface Curvature |
|
|
335 | (4) |
|
13.2.2.1 Stress on Atoms under a Curved Surface |
|
|
335 | (1) |
|
13.2.2.2 Chemical Potential of Atoms under a Curved Surface |
|
|
336 | (1) |
|
13.2.2.3 Vacancy Concentration under a Curved Surface |
|
|
337 | (1) |
|
13.2.2.4 Vapor Pressure over a Curved Surface |
|
|
338 | (1) |
|
13.2.3 Grain Boundary Effects |
|
|
339 | (2) |
|
13.2.4 Mechanisms of Sintering |
|
|
341 | (1) |
|
13.2.5 Stages of Sintering |
|
|
342 | (2) |
|
13.2.6 Theoretical Analysis of Solid-State Sintering |
|
|
344 | (7) |
|
13.2.6.1 Analytical Models |
|
|
344 | (6) |
|
13.2.6.2 Herring Scaling Law |
|
|
350 | (1) |
|
13.2.6.3 Numerical Simulations |
|
|
350 | (1) |
|
13.2.6.4 Phenomenological Sintering Equations |
|
|
350 | (1) |
|
|
351 | (22) |
|
13.3.1 Types of Grain Growth |
|
|
352 | (1) |
|
13.3.2 Importance of Controlling Grain Growth during Sintering |
|
|
352 | (1) |
|
13.3.3 Normal Grain Growth |
|
|
353 | (4) |
|
13.3.4 Abnormal Grain Growth |
|
|
357 | (2) |
|
|
359 | (3) |
|
13.3.6 Control of Grain Growth |
|
|
362 | (6) |
|
13.3.6.1 Effect of Dopants |
|
|
362 | (4) |
|
13.3.6.2 Effect of Fine Inert Second-Phase Particles |
|
|
366 | (2) |
|
13.3.7 Grain Growth in Porous Ceramics |
|
|
368 | (3) |
|
13.3.8 Simultaneous Densification and Grain Growth |
|
|
371 | (2) |
|
|
373 | (2) |
|
13.5 Liquid-Phase Sintering |
|
|
375 | (11) |
|
13.5.1 Stages of Liquid-Phase Sintering |
|
|
376 | (1) |
|
13.5.2 Microstructure of Liquid-Phase Sintered Ceramics |
|
|
377 | (1) |
|
13.5.3 Role of Solid-State Sintering in Liquid-Phase Sintering |
|
|
377 | (1) |
|
13.5.4 Thermodynamic and Kinetic Factors |
|
|
377 | (4) |
|
13.5.4.1 Wetting and Spreading of the Liquid |
|
|
378 | (1) |
|
|
379 | (1) |
|
13.5.4.3 Morphology of Grains and Liquid Phase |
|
|
380 | (1) |
|
13.5.4.4 Effect of Solubility |
|
|
380 | (1) |
|
13.5.4.5 Capillary Forces |
|
|
381 | (1) |
|
13.5.4.6 Effect of Gravity |
|
|
381 | (1) |
|
13.5.5 Mechanisms of Liquid-Phase Sintering |
|
|
381 | (4) |
|
13.5.5.1 Stage 1: Rearrangement and Liquid Redistribution |
|
|
382 | (1) |
|
13.5.5.2 Stage 2: Solution-Precipitation |
|
|
382 | (3) |
|
13.5.5.3 Stage 3: Ostwald Ripening |
|
|
385 | (1) |
|
13.5.6 Phase Diagrams in Liquid-Phase Sintering |
|
|
385 | (1) |
|
13.6 Pressure-Assisted Sintering |
|
|
386 | (2) |
|
13.6.1 Pressure-Assisted Sintering Models |
|
|
386 | (2) |
|
13.6.2 Mechanisms of Pressure-Assisted Sintering |
|
|
388 | (1) |
|
13.7 Field-Assisted Sintering Techniques |
|
|
388 | (3) |
|
13.7.1 Spark Plasma Sintering |
|
|
389 | (1) |
|
|
390 | (1) |
|
|
391 | (1) |
|
|
391 | (3) |
|
|
394 | (3) |
Chapter 14 Sintering Process Variables and Techniques |
|
397 | (40) |
|
|
397 | (1) |
|
14.2 Sintering Furnaces and Furnace Supports |
|
|
397 | (1) |
|
14.3 Particle Size and Packing |
|
|
398 | (6) |
|
|
399 | (1) |
|
14.3.2 Particle Size Distribution |
|
|
399 | (1) |
|
14.3.3 Particle Shape and Particle Structure |
|
|
400 | (1) |
|
|
400 | (3) |
|
14.3.5 Effect of Green Density |
|
|
403 | (1) |
|
14.4 Anisotropic Shrinkage |
|
|
404 | (2) |
|
14.4.1 Pore Shape Anisotropy |
|
|
405 | (1) |
|
14.4.2 Particle Alignment |
|
|
406 | (1) |
|
|
406 | (6) |
|
14.5.1 Design and Prediction of Heating Schedule |
|
|
408 | (1) |
|
14.5.2 Effect of Heating Rate on Sintering |
|
|
409 | (1) |
|
14.5.3 Special Heating Schedules |
|
|
410 | (2) |
|
14.5.3.1 Multistage Sintering |
|
|
410 | (1) |
|
|
411 | (1) |
|
14.5.3.3 Rate-Controlled Sintering |
|
|
412 | (1) |
|
14.6 Sintering Atmosphere |
|
|
412 | (8) |
|
|
412 | (4) |
|
14.6.2 Effect on Vapor Transport |
|
|
416 | (1) |
|
14.6.3 Volatilization and Decomposition |
|
|
417 | (2) |
|
|
419 | (1) |
|
|
420 | (2) |
|
14.8 Pressure-Assisted Sintering |
|
|
422 | (4) |
|
|
423 | (1) |
|
14.8.2 Hot Isostatic Pressing |
|
|
424 | (2) |
|
14.9 Spark Plasma Sintering |
|
|
426 | (1) |
|
14.10 Sintering of Ceramic Composites, Coatings, and Multilayers |
|
|
427 | (6) |
|
14.10.1 Sintering of Ceramic Composites |
|
|
427 | (2) |
|
14.10.2 Sintering of Adherent Coatings |
|
|
429 | (2) |
|
14.10.3 Cosintering of Multilayer Ceramics |
|
|
431 | (2) |
|
|
433 | (1) |
|
|
433 | (1) |
|
|
434 | (3) |
Chapter 15 Sol-Gel Processing |
|
437 | (44) |
|
|
437 | (1) |
|
15.2 Sol-Gel Processing of Aqueous Silicates |
|
|
437 | (5) |
|
|
440 | (2) |
|
15.2.1.1 Polymerization in the pH Range 2 to 7 |
|
|
441 | (1) |
|
15.2.1.2 Polymerization above pH almost = to 7 |
|
|
441 | (1) |
|
15.2.1.3 Polymerization below pH almost = to 2 |
|
|
442 | (1) |
|
|
442 | (4) |
|
15.3.1 Preparation of Metal Alkoxides |
|
|
443 | (1) |
|
15.3.2 Basic Properties of Metal Alkoxides |
|
|
444 | (2) |
|
15.3.2.1 Physical Properties |
|
|
444 | (1) |
|
15.3.2.2 Chemical Properties |
|
|
445 | (1) |
|
15.4 Sol-Gel Processing of Silicon Alkoxides |
|
|
446 | (22) |
|
15.4.1 Hydrolysis and Condensation |
|
|
446 | (3) |
|
15.4.1.1 Acid-Catalyzed Conditions |
|
|
448 | (1) |
|
15.4.1.2 Base-Catalyzed Conditions |
|
|
448 | (1) |
|
|
449 | (2) |
|
15.4.3 Structural Evolution of Sol-Gel Silicates |
|
|
451 | (1) |
|
15.4.3.1 pH < similar to 2 |
|
|
451 | (1) |
|
15.4.3.2 pH > similar to 7 |
|
|
451 | (1) |
|
15.4.3.3 pH almost = to 2 to 7 |
|
|
451 | (1) |
|
|
452 | (2) |
|
|
454 | (10) |
|
15.4.5.1 Conventional Drying |
|
|
455 | (7) |
|
15.4.5.2 Supercritical Drying |
|
|
462 | (1) |
|
15.4.5.3 Structural Changes during Conventional Drying |
|
|
463 | (1) |
|
15.4.6 Gel Densification during Sintering |
|
|
464 | (4) |
|
15.4.6.1 Driving Forces and Mechanisms of Densification |
|
|
464 | (3) |
|
15.4.6.2 Kinetic and Practical Factors |
|
|
467 | (1) |
|
15.5 Sol-Gel Preparation Techniques |
|
|
468 | (6) |
|
15.5.1 Preparation of Particulate Gels |
|
|
468 | (2) |
|
15.5.1.1 Single-Component Gels |
|
|
468 | (1) |
|
15.5.1.2 Multicomponent Gels |
|
|
469 | (1) |
|
15.5.2 Preparation of Polymeric Gels |
|
|
470 | (4) |
|
15.5.2.1 Partial Hydrolysis of the Slowest Reacting Alkoxide |
|
|
471 | (1) |
|
15.5.2.2 Slow Addition of Small Amounts of Water |
|
|
472 | (1) |
|
15.5.2.3 Use of a Mixture of Alkoxides and Metal Salts |
|
|
473 | (1) |
|
15.5.2.4 Alternative Routes |
|
|
474 | (1) |
|
15.6 Applications of Sol-Gel Processing |
|
|
474 | (4) |
|
15.6.1 Thin Films and Coatings |
|
|
474 | (2) |
|
|
476 | (1) |
|
|
477 | (1) |
|
|
477 | (1) |
|
15.6.5 Hybrid Inorganic-Organic Materials |
|
|
478 | (1) |
|
|
478 | (1) |
|
|
479 | (1) |
|
|
479 | (2) |
Chapter 16 Ceramic Fabrication Methods for Specific Shapes and Architectures |
|
481 | (22) |
|
|
481 | (1) |
|
16.2 Chemical Vapor Deposition |
|
|
481 | (3) |
|
16.2.1 Plasma-Assisted Chemical Vapor Deposition |
|
|
483 | (1) |
|
16.2.2 Chemical Vapor Infiltration |
|
|
484 | (1) |
|
16.3 Directed Metal Oxidation |
|
|
484 | (2) |
|
|
486 | (5) |
|
16.4.1 Reaction-Bonded Silicon Nitride |
|
|
486 | (1) |
|
16.4.2 Reaction-Bonded Silicon Carbide |
|
|
487 | (3) |
|
16.4.3 Reaction Bonding of Oxide Ceramics |
|
|
490 | (1) |
|
|
491 | (5) |
|
16.5.1 Polymer Precursors for Silicon Carbide |
|
|
493 | (1) |
|
16.5.2 Polymer Precursors for Silicon Nitride |
|
|
494 | (2) |
|
16.6 Fabrication Routes for Fiber-Reinforced Ceramic Matrix Composites |
|
|
496 | (5) |
|
16.6.1 Processing of SiC Fiber-Reinforced SiC Matrix Composites |
|
|
496 | (3) |
|
16.6.1.1 Chemical Vapor Infiltration |
|
|
497 | (2) |
|
16.6.1.2 Polymer Infiltration and Pyrolysis |
|
|
499 | (1) |
|
16.6.1.3 Reactive Melt Infiltration |
|
|
499 | (1) |
|
16.6.1.4 Powder Processing |
|
|
499 | (1) |
|
16.6.2 Processing of Porous Oxide Fiber-Oxide Matrix Composites |
|
|
499 | (2) |
|
|
501 | (1) |
|
|
501 | (1) |
|
|
502 | (1) |
Appendix I: Physical Constants |
|
503 | (2) |
Appendix II: SI Units - Names and Symbols |
|
505 | (2) |
Appendix III: Conversion of Units |
|
507 | (2) |
Appendix IV: Aperture Size of U.S. Standard Wire Mesh Sieves (ASTM E 11:87) |
|
509 | (2) |
Appendix V: Density and Melting Point of Some Elements, Ceramics, and Minerals |
|
511 | (4) |
Index |
|
515 | |