Muutke küpsiste eelistusi

Cerebral Autoregulation: Control of Blood Flow in the Brain 1st ed. 2016 [Pehme köide]

  • Formaat: Paperback / softback, 125 pages, kõrgus x laius: 235x155 mm, kaal: 2292 g, 6 Illustrations, color; 18 Illustrations, black and white; XV, 125 p. 24 illus., 6 illus. in color., 1 Paperback / softback
  • Sari: SpringerBriefs in Bioengineering
  • Ilmumisaeg: 01-Jul-2016
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319317830
  • ISBN-13: 9783319317830
  • Pehme köide
  • Hind: 62,59 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 73,64 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 125 pages, kõrgus x laius: 235x155 mm, kaal: 2292 g, 6 Illustrations, color; 18 Illustrations, black and white; XV, 125 p. 24 illus., 6 illus. in color., 1 Paperback / softback
  • Sari: SpringerBriefs in Bioengineering
  • Ilmumisaeg: 01-Jul-2016
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319317830
  • ISBN-13: 9783319317830
This Brief provides a comprehensive introduction to the control of blood flow in the brain. Beginning with the basic physiology of autoregulation, the author goes on to discuss measurement techniques, mathematical models, methods of analysis, and relevant clinical conditions, all within this single volume. The author draws together this disparate field, and lays the groundwork for future research directions.





The text gives an up-to-date review of the state of the art in cerebral autoregulation, which is particularly relevant as cerebral autoregulation moves from the laboratory to the bedside. Cerebral Autoregulation will be useful to researchers in the physical sciences such as mathematical biology, medical physics, and biomedical engineering whose work is concerned with the brain. Researchers in the medical sciences and clinicians dealing with the brain and blood flow, as well as industry professionals developing techniques such as ultrasound, MRI, and CT will alsofind this Brief of interest.
1 Physiological Basis
1(18)
1.1 Cerebral Vasculature
1(3)
1.2 Haemodynamics
4(1)
1.3 Regulation of Flow
5(6)
1.3.1 Control of Arteriolar Tone
8(1)
1.3.2 Control of Capillary Flow
9(1)
1.3.3 Control of Venous Tone
10(1)
1.3.4 Neurogenic Control
10(1)
1.4 Effects of Blood Gas Levels
11(2)
1.5 Neural Control
13(2)
1.6 Conclusions
15(4)
References
16(3)
2 Measurement Techniques
19(20)
2.1 Development of CBF Measurements
19(4)
2.2 Transcranial Doppler
23(4)
2.3 Near Infra-red Spectroscopy
27(2)
2.4 MRI
29(1)
2.5 Arterial Blood Pressure
30(1)
2.6 Autoregulation Tests
31(3)
2.7 Conclusions
34(5)
References
34(5)
3 Mathematical Models
39(18)
3.1 Compartmental Models
39(6)
3.1.1 Equivalent Electrical Circuits
40(1)
3.1.2 Whole Brain Models
41(4)
3.2 Biochemical Feedback Models
45(3)
3.3 Network Models
48(3)
3.4 fMRI BOLD Response Models
51(1)
3.5 Parameter Fitting and Sensitivity Analysis
52(1)
3.6 Conclusions
53(4)
References
54(3)
4 Analysis Techniques
57(18)
4.1 Time Domain Analysis
57(7)
4.1.1 Rate of Regulation (RoR) and Autoregulation Index (ARI)
58(3)
4.1.2 Impulse Response and Step Response
61(2)
4.1.3 Correlation Coefficient (Mx)
63(1)
4.2 Frequency Domain Analysis
64(3)
4.2.1 Univariate Analysis
64(3)
4.2.2 Multivariate Analysis
67(1)
4.3 Non-stationary Analysis
67(2)
4.4 Non-linear Analysis
69(2)
4.5 Conclusions
71(4)
References
72(3)
5 Clinical Conditions
75(46)
5.1 Static Autoregulation
75(2)
5.2 Ageing/Fitness/Exercise
77(2)
5.3 Pregnancy
79(1)
5.4 Neonates
79(2)
5.5 Altitude
81(1)
5.6 Diabetes
82(2)
5.7 Obstructive Sleep Apnoea Syndrome
84(1)
5.8 Orthostatic Hypotension/Autonomic Failure
84(2)
5.9 Stenosis
86(3)
5.10 Dementia
89(1)
5.11 Anaesthetic and Other Drugs
90(1)
5.12 Cardiac Arrest and Surgery
91(1)
5.13 Stroke
92(5)
5.13.1 Ischaemic Stroke
93(2)
5.13.2 Haemorrhagic Stroke
95(2)
5.14 Brain Trauma and Injury
97(4)
5.15 Miscellaneous Conditions
101(2)
5.16 Conclusions
103(18)
References
104(17)
6 Conclusions
121
6.1 Cerebral Autoregulation Today
121(2)
6.2 Cerebral Autoregulation Tomorrow
123
References
125
Stephen Payne is currently an Associate Professor at the University of Oxford (since 2006) and has been working in the field of cerebral blood flow and autoregulation for over 10 years, with a number of grants in this area and a substantial number (>60) of research papers published. He has also supervised over 20 PhD students, most of whom have worked in this and related areas.