Muutke küpsiste eelistusi

CFD for Wind and Tidal Offshore Turbines 2015 ed. [Kõva köide]

Edited by , Edited by
  • Formaat: Hardback, 128 pages, kõrgus x laius: 235x155 mm, kaal: 3317 g, 27 Illustrations, color; 34 Illustrations, black and white; VIII, 128 p. 61 illus., 27 illus. in color., 1 Hardback
  • Sari: Springer Tracts in Mechanical Engineering
  • Ilmumisaeg: 25-Jun-2015
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319162012
  • ISBN-13: 9783319162010
  • Kõva köide
  • Hind: 95,02 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 111,79 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 128 pages, kõrgus x laius: 235x155 mm, kaal: 3317 g, 27 Illustrations, color; 34 Illustrations, black and white; VIII, 128 p. 61 illus., 27 illus. in color., 1 Hardback
  • Sari: Springer Tracts in Mechanical Engineering
  • Ilmumisaeg: 25-Jun-2015
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319162012
  • ISBN-13: 9783319162010

The book encompasses novel CFD techniques to compute offshore wind and tidal applications.

Computational fluid dynamics (CFD) techniques are regarded as the main design tool to explore the new engineering challenges presented by offshore wind and tidal turbines for energy generation. The difficulty and costs of undertaking experimental tests in offshore environments have increased the interest in the field of CFD which is used to design appropriate turbines and blades, understand fluid flow physical phenomena associated with offshore environments, predict power production or characterise offshore environments, amongst other topics.

1 Flow Scales in Cross-Flow Turbines
1(12)
E. Ferrer
S. Le Clainche
2 Numerical Study of 2D Vertical Axis Wind and Tidal Turbines with a Degree-Adaptive Hybridizable Discontinuous Galerkin Method
13(14)
A. Montlaur
G. Giorgiani
3 A Moving Least Squares-Based High-Order-Preserving Sliding Mesh Technique with No Intersections
27(10)
L. Ramirez
X. Nogueira
C. Foulquie
S. Khelladi
J.C. Chassaing
I. Colominas
4 Vertical-Axis Wind Turbine Start-Up Modelled with a High-Order Numerical Solver
37(12)
J.M. Rainbird
E. Ferrer
J. Peiro
J.M.R. Graham
5 Large-Eddy Simulation of a Vertical Axis Tidal Turbine Using an Immersed Boundary Method
49(10)
P. Ouro Barba
T. Stoesser
R. McSherry
6 Computational Study of the Interaction Between Hydrodynamics and Rigid Body Dynamics of a Darrieus Type H Turbine
59(10)
O.D. Lopez
D.P. Meneses
S. Lain
7 The Physics of Starting Process for Vertical Axis Wind Turbines
69(14)
H. Dumitrescu
V. Cardos
I. Malael
8 Hybrid Mesh Deformation Tool for Offshore Wind Turbines Aeroelasticity Prediction
83(12)
S. Gonzalez Horcas
F. Debrabandere
B. Tartinville
C. Hirsch
G. Coussement
9 Numerical Simulation of Wave Loading on Static Offshore Structures
95(12)
H. Jasak
V. Vukcevic
I. Gatin
10 MLS-Based Selective Limiting for Shallow Waters Equations
107(10)
J. Cernadas
X. Nogueira
I. Colominas
11 A Comparison of Panel Method and RANS Calculations for a Horizontal Axis Marine Current Turbine
117
J. Baltazar
J.A.C. Falcao de Campos