|
|
1 | (8) |
|
1.1 Information and observation in decision models |
|
|
2 | (1) |
|
|
3 | (6) |
|
1.2.1 Examination strategy |
|
|
3 | (1) |
|
|
4 | (1) |
|
|
4 | (1) |
|
|
4 | (1) |
|
|
5 | (1) |
|
1.2.6 Automobile replacement problem |
|
|
6 | (1) |
|
1.2.7 Automatic regulation |
|
|
6 | (3) |
|
Chapter 2 Probabilistic preliminaries |
|
|
9 | (16) |
|
2.1 Probability spaces and random variables |
|
|
9 | (3) |
|
|
12 | (1) |
|
2.3 Steinhaus construction |
|
|
13 | (1) |
|
|
14 | (2) |
|
2.5 Martingales and stopping times |
|
|
16 | (9) |
|
|
17 | (3) |
|
|
20 | (5) |
|
Part I Models with complete observation and information |
|
|
|
Chapter 3 Decision models |
|
|
25 | (10) |
|
3.1 Constructions of controlled sequences |
|
|
25 | (3) |
|
|
28 | (7) |
|
|
30 | (5) |
|
Chapter 4 Dynamic programming |
|
|
35 | (12) |
|
|
35 | (3) |
|
4.2 Stochastic controllability |
|
|
38 | (1) |
|
|
39 | (5) |
|
|
42 | (2) |
|
|
44 | (3) |
|
Chapter 5 Linear regulator problem |
|
|
47 | (10) |
|
5.1 Solution of the problem |
|
|
47 | (3) |
|
5.2 General linear systems |
|
|
50 | (2) |
|
|
52 | (5) |
|
Chapter 6 Financial models |
|
|
57 | (16) |
|
|
57 | (1) |
|
|
58 | (15) |
|
6.2.1 Formulation of the problem |
|
|
58 | (2) |
|
6.2.2 Pricing with arbitrary hedging |
|
|
60 | (7) |
|
6.2.3 Pricing with constraints on hedging |
|
|
67 | (3) |
|
6.2.4 Models in continuous time |
|
|
70 | (3) |
|
Chapter 7 Infinite horizon problems |
|
|
73 | (22) |
|
|
73 | (4) |
|
|
77 | (2) |
|
7.3 Stabilization of linear systems |
|
|
79 | (6) |
|
7.3.1 Stabilizability conditions |
|
|
79 | (2) |
|
7.3.2 Algebraic Riccati equation |
|
|
81 | (4) |
|
|
85 | (5) |
|
|
90 | (5) |
|
|
90 | (1) |
|
|
91 | (4) |
|
Chapter 8 Ergodic problems |
|
|
95 | (26) |
|
8.1 Invariant measures for Markov chains |
|
|
96 | (5) |
|
|
96 | (1) |
|
|
97 | (4) |
|
8.2 Bellman-Howard's equations |
|
|
101 | (6) |
|
8.3 Ergodic control of finite chains |
|
|
107 | (7) |
|
8.3.1 Existence of an optimal strategy |
|
|
107 | (4) |
|
8.3.2 Linear Bellman-Howard's equations |
|
|
111 | (2) |
|
8.3.3 Policy improvement algorithm |
|
|
113 | (1) |
|
8.4 Ergodic regulator problem |
|
|
114 | (7) |
|
8.4.1 Bellman-Howard's equation |
|
|
115 | (1) |
|
8.4.2 Ergodicity of the optimal control |
|
|
116 | (5) |
|
Part II Models with partial observation |
|
|
|
Chapter 9 Control of finite models |
|
|
121 | (8) |
|
9.1 Filtering for Markov chains |
|
|
121 | (4) |
|
|
125 | (4) |
|
Chapter 10 General models |
|
|
129 | (6) |
|
10.1 Conditional distributions |
|
|
129 | (2) |
|
10.2 Separation principle |
|
|
131 | (4) |
|
Chapter 11 Control of linear systems |
|
|
135 | (16) |
|
11.1 Conditional Gaussian distributions |
|
|
136 | (3) |
|
|
139 | (4) |
|
11.3 Estimation of the controlled process |
|
|
143 | (2) |
|
|
145 | (2) |
|
11.5 Partially observed regulation |
|
|
147 | (4) |
|
Part III Models with partial information |
|
|
|
Chapter 12 Adaptive control of finite models |
|
|
151 | (6) |
|
12.1 Formulation of the problem |
|
|
151 | (1) |
|
12.2 Contrast function estimators |
|
|
152 | (2) |
|
12.3 Self-tuning regulator |
|
|
154 | (3) |
|
Chapter 13 Adaptive control of linear systems |
|
|
157 | (14) |
|
13.1 Admissible strategies |
|
|
157 | (4) |
|
13.2 Least-square estimation |
|
|
161 | (5) |
|
13.3 Optimal adaptive strategies |
|
|
166 | (5) |
|
Chapter 14 Adaptive stabilization |
|
|
171 | (4) |
|
14.1 Formulation of the problem |
|
|
171 | (1) |
|
14.2 Solution of the problem |
|
|
172 | (3) |
|
|
175 | (6) |
|
15.1 Complements on Markov chains |
|
|
175 | (3) |
|
15.1.1 Two historical examples |
|
|
175 | (1) |
|
15.1.2 An interpretation of invariant distributions |
|
|
176 | (2) |
|
|
178 | (1) |
|
|
179 | (2) |
Bibliography |
|
181 | (6) |
Index |
|
187 | |