Preface |
|
xxxiii | |
Chapter 1 Introduction to CMOS Design |
|
1 | (30) |
|
1.1 The CMOS IC Design Process |
|
|
1 | (4) |
|
|
2 | (30) |
|
Layout and Cross-Sectional Views |
|
|
5 | (1) |
|
|
5 | (3) |
|
|
6 | (1) |
|
|
6 | (1) |
|
|
7 | (1) |
|
|
7 | (1) |
|
1.3 An Introduction to SPICE |
|
|
8 | (23) |
|
Generating a Netlist File |
|
|
8 | (1) |
|
|
8 | (2) |
|
Transfer Function Analysis |
|
|
10 | (1) |
|
The Voltage-Controlled Voltage Source |
|
|
10 | (1) |
|
|
11 | (1) |
|
|
12 | (1) |
|
|
13 | (1) |
|
|
13 | (1) |
|
|
14 | (1) |
|
|
14 | (1) |
|
|
15 | (1) |
|
|
16 | (1) |
|
Another RC Circuit Example |
|
|
17 | (1) |
|
|
18 | (1) |
|
|
19 | (1) |
|
|
19 | (1) |
|
|
20 | (1) |
|
|
20 | (1) |
|
|
21 | (1) |
|
Delay and Rise time in RC Circuits |
|
|
21 | (1) |
|
Piece-Wise Linear (PWL) Source |
|
|
22 | (1) |
|
|
22 | (1) |
|
Initial Conditions on a Capacitor |
|
|
23 | (1) |
|
Initial Conditions in an Inductor |
|
|
23 | (1) |
|
|
24 | (1) |
|
Frequency Response of an Ideal Integrator |
|
|
24 | (2) |
|
|
26 | (1) |
|
Time-Domain Behavior of the Integrator |
|
|
26 | (1) |
|
|
26 | (1) |
|
Some Common Mistakes and Helpful Techniques |
|
|
27 | (4) |
Chapter 2 The Well |
|
31 | (28) |
|
The Substrate (The Unprocessed Wafer) |
|
|
31 | (1) |
|
|
31 | (1) |
|
Using the N-well as a Resistor |
|
|
32 | (1) |
|
|
32 | (3) |
|
2.1.1 Patterning the N-well |
|
|
35 | (1) |
|
2.2 Laying Out the N-well |
|
|
35 | (1) |
|
2.2.1 Design Rules for the N-well |
|
|
36 | (1) |
|
2.3 Resistance Calculation |
|
|
36 | (3) |
|
|
38 | (1) |
|
2.3.1 The N-well Resistor |
|
|
38 | (1) |
|
2.4 The N-well/Substrate Diode |
|
|
39 | (9) |
|
2.4.1 A Brief Introduction to PN Junction Physics |
|
|
39 | (3) |
|
|
40 | (1) |
|
|
41 | (1) |
|
2.4.2 Depletion Layer Capacitance |
|
|
42 | (3) |
|
2.4.3 Storage or Diffusion Capacitance |
|
|
45 | (1) |
|
|
46 | (2) |
|
2.5 The RC Delay through the N-well |
|
|
48 | (3) |
|
|
48 | (2) |
|
|
50 | (1) |
|
|
51 | (1) |
|
|
51 | (8) |
|
Design Rules for the Well |
|
|
52 | (2) |
|
|
54 | (5) |
Chapter 3 The Metal Layers |
|
59 | (24) |
|
|
59 | (4) |
|
3.1.1 Laying Out the Pad I |
|
|
60 | (3) |
|
Capacitance of Metal-to-Substrate |
|
|
60 | (2) |
|
|
62 | (1) |
|
|
62 | (1) |
|
3.2 Design and Layout Using the Metal Layers |
|
|
63 | (7) |
|
|
63 | (1) |
|
|
63 | (1) |
|
3.2.2 Parasitics Associated with the Metal Layers |
|
|
63 | (4) |
|
Intrinsic Propagation Delay |
|
|
65 | (2) |
|
3.2.3 Current-Carrying Limitations |
|
|
67 | (1) |
|
3.2.4 Design Rules for the Metal Layers |
|
|
68 | (1) |
|
Layout of Two Shapes or a Single Shape |
|
|
68 | (1) |
|
A Layout Trick for the Metal Layers |
|
|
68 | (1) |
|
|
69 | (1) |
|
3.3 Crosstalk and Ground Bounce |
|
|
70 | (4) |
|
|
71 | (1) |
|
|
72 | (2) |
|
|
72 | (1) |
|
|
72 | (2) |
|
|
74 | (1) |
|
|
74 | (9) |
|
3.4.1 Laying Out the Pad II |
|
|
74 | (2) |
|
3.4.2 Laying Out Metal Test Structures |
|
|
76 | (7) |
|
|
79 | (4) |
Chapter 4 The Active and Poly Layers |
|
83 | (24) |
|
4.1 Layout Using the Active and Poly Layers |
|
|
83 | (10) |
|
|
83 | (1) |
|
The P- and N-Select Layers |
|
|
84 | (2) |
|
|
86 | (1) |
|
|
86 | (2) |
|
|
88 | (1) |
|
|
89 | (1) |
|
|
90 | (1) |
|
|
90 | (54) |
|
|
91 | (2) |
|
4.2 Connecting Wires to Poly and Active |
|
|
93 | (6) |
|
Connecting the P-Substrate to Ground |
|
|
94 | (1) |
|
Layout of an N-Well Resistor |
|
|
94 | (1) |
|
|
95 | (1) |
|
|
96 | (1) |
|
A Comment Concerning MOSFET Symbols |
|
|
97 | (1) |
|
|
97 | (1) |
|
|
98 | (1) |
|
4.3 Electrostatic Discharge (ESD) Protection |
|
|
99 | (8) |
|
|
101 | (6) |
Chapter 5 Resistors, Capacitors, MOSFETs |
|
107 | (28) |
|
|
107 | (8) |
|
Temperature Coefficient (Temp Co) |
|
|
107 | (1) |
|
|
108 | (1) |
|
|
109 | (1) |
|
|
110 | (1) |
|
|
111 | (1) |
|
|
112 | (1) |
|
|
112 | (2) |
|
|
114 | (1) |
|
|
115 | (3) |
|
Layout of the Poly-Poly Capacitor |
|
|
115 | (2) |
|
|
117 | (1) |
|
Temperature Coefficient (Temp Co) |
|
|
117 | (1) |
|
|
117 | (1) |
|
|
118 | (7) |
|
|
118 | (1) |
|
|
119 | (1) |
|
Source/Drain Depletion Capacitance |
|
|
119 | (1) |
|
Source/Drain Parasitic Resistance |
|
|
119 | (2) |
|
Layout of Long-Length MOSFETs |
|
|
121 | (1) |
|
Layout of Large-Width MOSFETs |
|
|
122 | (1) |
|
A Qualitative Description of MOSFET Capacitances |
|
|
123 | (2) |
|
|
125 | (10) |
|
|
126 | (2) |
|
|
128 | (7) |
Chapter 6 MOSFET Operation |
|
135 | (30) |
|
6.1 MOSFET Capacitance Overview/Review |
|
|
136 | (3) |
|
|
136 | (1) |
|
|
137 | (1) |
|
Case Ill: Strong Inversion |
|
|
137 | (2) |
|
|
139 | (1) |
|
6.2 The Threshold Voltage |
|
|
139 | (5) |
|
|
141 | (2) |
|
|
143 | (1) |
|
6.3 IV Characteristics of MOSFETs |
|
|
144 | (5) |
|
6.3.1 MOSFET Operation in the Triode Region |
|
|
144 | (2) |
|
6.3.2 The Saturation Region |
|
|
146 | (3) |
|
Cgs Calculation in the Saturation Region |
|
|
148 | (1) |
|
6.4 SPICE Modeling of the MOSFET |
|
|
149 | (5) |
|
Model Parameters Related to VTHN |
|
|
149 | (1) |
|
Long-Channel MOSFET Models |
|
|
149 | (1) |
|
Model Parameters Related to the Drain Current |
|
|
150 | (1) |
|
SPICE Modeling of the Source and Drain Implants |
|
|
150 | (1) |
|
|
151 | (1) |
|
6.4.1 Some SPICE Simulation Examples |
|
|
151 | (1) |
|
Threshold Voltage and Body Effect |
|
|
151 | (1) |
|
6.4.2 The Subthreshold Current |
|
|
152 | (2) |
|
6.5 Short-Channel MOSFETs |
|
|
154 | (11) |
|
|
154 | (1) |
|
Lightly Doped Drain (LDD) |
|
|
155 | (1) |
|
|
155 | (1) |
|
6.5.2 Short-Channel Effects |
|
|
156 | (1) |
|
Negative Bias Temperature Instability (NBTI) |
|
|
156 | (1) |
|
|
157 | (1) |
|
Drain-Induced Barrier Lowering |
|
|
157 | (1) |
|
Gate-Induced Drain Leakage |
|
|
157 | (1) |
|
|
157 | (1) |
|
6.5.3 SPICE Models for Our Short-Channel CMOS Process |
|
|
157 | (8) |
|
BSIM4 Model Listing (NMOS) |
|
|
157 | (2) |
|
BSIM4 Model Listing (PMOS) |
|
|
159 | (1) |
|
|
160 | (5) |
Chapter 7 CMOS Fabrication |
|
165 | (56) |
|
|
|
165 | (15) |
|
|
165 | (2) |
|
Metallurgical Grade Silicon (MGS) |
|
|
166 | (1) |
|
Electronic Grade Silicon (EGS) |
|
|
166 | (1) |
|
Czochralski (CZ) Growth and Wafer Formation |
|
|
166 | (1) |
|
|
167 | (1) |
|
|
168 | (2) |
|
|
169 | (1) |
|
|
170 | (1) |
|
|
170 | (3) |
|
|
172 | (1) |
|
|
173 | (1) |
|
|
173 | (1) |
|
|
173 | (4) |
|
|
174 | (1) |
|
|
174 | (1) |
|
|
175 | (1) |
|
Chemical Mechanical Polishing |
|
|
176 | (1) |
|
7.1.6 Thin Film Deposition |
|
|
177 | (3) |
|
Physical Vapor Deposition (PVD) |
|
|
178 | (1) |
|
Chemical Vapor Depositon (CVD) |
|
|
179 | (1) |
|
7.2 CMOS Process Integration |
|
|
180 | (30) |
|
|
181 | (1) |
|
|
181 | (1) |
|
|
181 | (1) |
|
7.2.1 Frontend-of-the-Line Integration |
|
|
182 | (14) |
|
|
182 | (2) |
|
Shallow Trench Isolation Module |
|
|
184 | (4) |
|
|
188 | (4) |
|
|
192 | (2) |
|
|
194 | (2) |
|
7.2.2 Backend-of-the-Line Integration |
|
|
196 | (16) |
|
Self-Aligned Silicide (Salicide) Module |
|
|
197 | (2) |
|
|
199 | (1) |
|
|
200 | (2) |
|
|
202 | (2) |
|
Intra-Metal Dielectric 1 Deposition |
|
|
204 | (1) |
|
|
205 | (1) |
|
|
205 | (1) |
|
Additional Metal/Dieletric Layers |
|
|
206 | (3) |
|
|
209 | (1) |
|
|
210 | (2) |
|
|
210 | (2) |
|
|
212 | (1) |
|
|
212 | (1) |
|
|
212 | (1) |
|
7.4 Advanced CMOS Process Integration |
|
|
212 | (7) |
|
|
213 | (3) |
|
7.4.2 Dual Damascene Low-k/Cu Interconnects |
|
|
216 | (3) |
|
|
219 | (2) |
Chapter 8 Electrical Noise: An Overview |
|
221 | (56) |
|
|
221 | (5) |
|
|
221 | (2) |
|
|
223 | (1) |
|
8.1.2 Power Spectral Density |
|
|
223 | (3) |
|
|
223 | (3) |
|
|
226 | (34) |
|
8.2.1 Calculating and Modeling Circuit Noise |
|
|
227 | (4) |
|
|
227 | (1) |
|
Noise Equivalent Bandwidth |
|
|
228 | (2) |
|
Input-Referred Noise in Cascaded Amplifiers |
|
|
230 | (1) |
|
Calculating Vonoise,RMS from a Spectrum: A Summary |
|
|
231 | (1) |
|
|
231 | (6) |
|
8.2.3 Signal-to-Noise Ratio |
|
|
237 | (10) |
|
|
238 | (2) |
|
|
240 | (1) |
|
An Important Limitation of the Noise Figure |
|
|
240 | (3) |
|
Optimum Source Resistance |
|
|
243 | (1) |
|
Simulating Noiseless Resistors |
|
|
243 | (2) |
|
|
245 | (1) |
|
|
246 | (1) |
|
|
247 | (4) |
|
|
251 | (7) |
|
8.2.6 Other Noise Sources |
|
|
258 | (2) |
|
Random Telegraph Signal Noise |
|
|
258 | (1) |
|
Excess Noise (Flicker Noise) |
|
|
259 | (1) |
|
|
259 | (1) |
|
|
260 | (17) |
|
|
260 | (4) |
|
Correlation of Input-Referred Noise Sources |
|
|
261 | (1) |
|
|
262 | (2) |
|
|
264 | (3) |
|
|
265 | (2) |
|
8.3.3 Some Final Notes Concerning Notation |
|
|
267 | (10) |
Chapter 9 Models for Analog Design |
|
277 | (50) |
|
|
277 | (25) |
|
9.1.1 The Square-Law Equations |
|
|
279 | (7) |
|
PMOS Square-Law Equations |
|
|
280 | (1) |
|
|
280 | (3) |
|
Threshold Voltage and Body Effect |
|
|
283 | (1) |
|
|
284 | (1) |
|
|
285 | (1) |
|
The Cutoff and Subthreshold Regions |
|
|
286 | (1) |
|
9.1.2 Small Signal Models |
|
|
286 | (14) |
|
|
287 | (5) |
|
|
292 | (1) |
|
|
293 | (1) |
|
Body Effect Transconductance, gmb |
|
|
294 | (1) |
|
|
295 | (2) |
|
MOSFET Transition Frequency, fT |
|
|
297 | (1) |
|
General Device Sizes for Analog Design |
|
|
298 | (1) |
|
Subthreshold gn, and VTHN |
|
|
299 | (1) |
|
9.1.3 Temperature Effects |
|
|
300 | (2) |
|
Threshold Variation and Temperature |
|
|
300 | (1) |
|
Mobility Variation with Temperature |
|
|
301 | (1) |
|
Drain Current Change with Temperature |
|
|
302 | (1) |
|
9.2 Short-Channel MOSFETs |
|
|
302 | (6) |
|
9.2.1 General Design (A Starting Point) |
|
|
303 | (3) |
|
|
304 | (1) |
|
|
304 | (1) |
|
|
305 | (1) |
|
9.2.2 Specific Design (A Discussion) |
|
|
306 | (2) |
|
9.3 MOSFET Noise Modeling |
|
|
308 | (19) |
|
Drain Current Noise Model |
|
|
308 | (19) |
Chapter 10 Models for Digital Design |
|
327 | (20) |
|
|
327 | (1) |
|
10.1 The Digital MOSFET Model |
|
|
328 | |
|
Effective Switching Resistance |
|
|
328 | (2) |
|
Short-Channel MOSFET Effective Switching Resistance |
|
|
330 | (1) |
|
10.1.1 Capacitive Effects |
|
|
331 | (1) |
|
10.1.2 Process Characteristic Time Constant |
|
|
331 | (2) |
|
10.1.3 Delay and Transition Times |
|
|
333 | |
|
10.1.4 General Digital Design |
|
|
326 | (1) |
|
10.2 The MOSFET Pass Gate |
|
|
326 | (15) |
|
|
337 | (1) |
|
10.2.1 Delay through a Pass Gate |
|
|
338 | (2) |
|
The Transmission Gate (The TG) |
|
|
340 | (1) |
|
10.2.2 Delay through Series-Connected PGs |
|
|
340 | (1) |
|
10.3 A Final Comment Concerning Measurements |
|
|
341 | (6) |
Chapter 11 The Inverter |
|
347 | (22) |
|
|
347 | (5) |
|
|
349 | (1) |
|
|
350 | (1) |
|
Ideal Inverter VTC and Noise Margins |
|
|
350 | (2) |
|
11.2 Switching Characteristics |
|
|
352 | (4) |
|
|
354 | (1) |
|
Dynamic Power Dissipation |
|
|
355 | (1) |
|
11.3 Layout of the Inverter |
|
|
356 | (2) |
|
|
356 | (2) |
|
11.4 Sizing for Large Capacitive Loads |
|
|
358 | (6) |
|
|
359 | (3) |
|
|
362 | (1) |
|
|
363 | (1) |
|
11.5 Other Inverter Configurations |
|
|
364 | (5) |
|
|
365 | (1) |
|
Inverters with Tri-State Outputs |
|
|
366 | (1) |
|
|
366 | (3) |
Chapter 12 Static Logic Gates |
|
369 | (20) |
|
12.1 DC Characteristics of the NAND and NOR Gates |
|
|
369 | (4) |
|
12.1.1 DC Characteristics of the NAND Gate |
|
|
369 | (3) |
|
12.1.2 DC Characteristics of the NOR Gate |
|
|
372 | (2) |
|
A Practical Note Concerning Vsp and Pass Gates |
|
|
373 | (1) |
|
12.2 Layout of the NAND and NOR Gates |
|
|
373 | (1) |
|
12.3 Switching Characteristics |
|
|
374 | (5) |
|
Parallel Connection of MOSFETs |
|
|
374 | (1) |
|
Series Connection of MOSFETs |
|
|
374 | (1) |
|
|
375 | (3) |
|
|
377 | (1) |
|
|
378 | (1) |
|
12.4 Complex CMOS Logic Gates |
|
|
379 | (10) |
|
Cascode Voltage Switch Logic |
|
|
383 | (1) |
|
Differential Split-Level Logic |
|
|
383 | (1) |
|
|
383 | (1) |
|
|
384 | (5) |
Chapter 13 Clocked Circuits |
|
389 | (22) |
|
|
389 | (2) |
|
|
390 | (1) |
|
13.2 Applications of the Transmission Gate |
|
|
391 | (4) |
|
|
391 | (3) |
|
|
394 | (1) |
|
13.3 Latches and Flip-Flops |
|
|
395 | (7) |
|
|
395 | (1) |
|
|
396 | (1) |
|
Flip-Flops and Flow-through Latches |
|
|
397 | (2) |
|
|
399 | (1) |
|
|
400 | (2) |
|
|
402 | (9) |
Chapter 14 Dynamic Logic Gates |
|
411 | (14) |
|
14.1 Fundamentals of Dynamic Logic |
|
|
411 | (6) |
|
|
411 | (3) |
|
14.1.2 Simulating Dynamic Circuits |
|
|
414 | (1) |
|
14.1.3 Nonoverlapping Clock Generation |
|
|
415 | (1) |
|
14.1.4 CMOS TG in Dynamic Circuits |
|
|
416 | (1) |
|
|
417 | (8) |
|
|
417 | (1) |
|
|
417 | (1) |
|
|
418 | (1) |
|
|
419 | (1) |
|
|
420 | (1) |
|
|
421 | (4) |
Chapter 15 CMOS Layout Examples |
|
425 | (20) |
|
|
426 | (8) |
|
|
426 | (1) |
|
|
426 | (2) |
|
Power and Ground Considerations |
|
|
428 | (3) |
|
|
431 | (2) |
|
|
433 | (1) |
|
|
434 | (11) |
|
|
Planning and Stick Diagrams |
|
|
434 | (3) |
|
|
437 | (1) |
|
|
437 | (1) |
|
Standard Cells Versus Full-Custom Layout |
|
|
437 | (8) |
Chapter 16 Memory Circuits |
|
445 | (48) |
|
|
446 | (12) |
|
|
446 | (6) |
|
NMOS Sense Amplifier (NSA) |
|
|
447 | (1) |
|
The Open Array Architecture |
|
|
447 | (3) |
|
PMOS Sense Amplifier (PSA) |
|
|
450 | (2) |
|
|
452 | (1) |
|
|
452 | (6) |
|
Layout of the DRAM Memory Bit (Mbit) |
|
|
453 | (5) |
|
|
458 | (1) |
|
|
458 | (13) |
|
16.2.1 Sense Amplifier Design |
|
|
458 | (9) |
|
Kickback Noise and Clock Feedthrough |
|
|
459 | (2) |
|
|
461 | (1) |
|
|
461 | (1) |
|
Contention Current (Switching Current) |
|
|
461 | (1) |
|
Removing Sense Amplifier Memory |
|
|
462 | (1) |
|
Creating an Imbalance and Reducing Kickback Noise |
|
|
462 | (3) |
|
Increasing the Input Range |
|
|
465 | (1) |
|
|
466 | (1) |
|
16.2.2 Row/Column Decoders |
|
|
467 | (3) |
|
Global and Local Decoders |
|
|
468 | (2) |
|
Reducing Decoder Layout Area |
|
|
470 | (1) |
|
|
470 | (1) |
|
|
471 | (22) |
|
|
473 | (1) |
|
16.3.2 Read-Only Memory (ROM) |
|
|
473 | (1) |
|
16.3.3 Floating Gate Memory |
|
|
473 | (21) |
|
|
474 | (3) |
|
Erasable Programmable Read-Only Memory |
|
|
477 | (1) |
|
|
478 | (1) |
|
|
479 | (14) |
Chapter 17 Sensing Using ΔΣ Modulation |
|
493 | (40) |
|
17.1 Qualitative Discussion |
|
|
494 | (12) |
|
|
494 | (2) |
|
|
495 | (1) |
|
|
496 | (1) |
|
|
496 | (1) |
|
17.1.2 Using DSM for Sensing in Flash Memory |
|
|
496 | (37) |
|
|
497 | (4) |
|
|
501 | (4) |
|
|
505 | (1) |
|
17.2 Sensing Resistive Memory |
|
|
506 | (7) |
|
|
507 | (1) |
|
Adding an Offset to the Comparator |
|
|
507 | (1) |
|
Schematic and Design Values |
|
|
508 | (3) |
|
|
511 | (2) |
|
17.3 Sensing in CMOS Imagers |
|
|
513 | (20) |
|
|
513 | (1) |
|
|
514 | (1) |
|
Sampling the Reference and Intensity Signals |
|
|
514 | (1) |
|
|
514 | (2) |
|
|
516 | (10) |
|
Sensing Circuit Mismatches |
|
|
526 | (7) |
Chapter 18 Special Purpose CMOS Circuits |
|
533 | (28) |
|
|
533 | (5) |
|
18.1.1 Design of the Schmitt Trigger |
|
|
534 | (2) |
|
Switching Characteristics |
|
|
536 | (1) |
|
18.1.2 Applications of the Schmitt Trigger |
|
|
536 | (2) |
|
18.2 Multivibrator Circuits |
|
|
538 | (3) |
|
18.2.1 The Monostable Multivibrator |
|
|
539 | (1) |
|
18.2.2 The Astable Multivibrator |
|
|
540 | (1) |
|
|
541 | (10) |
|
|
541 | (2) |
|
|
542 | (1) |
|
18.3.2 Differential Circuits |
|
|
543 | (4) |
|
|
544 | (3) |
|
|
547 | (3) |
|
18.3.4 Reducing Buffer Input Resistance |
|
|
550 | (1) |
|
18.4 Charge Pumps (Voltage Generators) |
|
|
551 | (10) |
|
|
552 | (1) |
|
Using MOSFETs for the Capacitors |
|
|
553 | (1) |
|
18.4.1 Increasing the Output Voltage |
|
|
553 | (1) |
|
18.4.2 Generating Higher Voltages: The Dickson Charge Pump |
|
|
553 | (3) |
|
Clock Driver with a Pumped Output Voltage |
|
|
554 | (1) |
|
|
555 | (1) |
|
|
556 | (5) |
Chapter 19 Digital Phase-Locked Loops |
|
561 | (60) |
|
|
563 | (7) |
|
19.1.1 The XOR Phase Detector |
|
|
563 | (4) |
|
19.1.2 The Phase Frequency Detector |
|
|
567 | (3) |
|
19.2 The Voltage-Controlled Oscillator |
|
|
570 | (6) |
|
19.2.1 The Current-Starved VCO |
|
|
570 | (4) |
|
Linearizing the VCO's Gain |
|
|
573 | (1) |
|
19.2.2 Source-Coupled VCOs |
|
|
574 | (2) |
|
|
576 | (14) |
|
|
577 | (6) |
|
|
581 | (2) |
|
|
583 | (7) |
|
|
583 | (1) |
|
Implementing the PFD in CMOS |
|
|
584 | (3) |
|
PFD with a Charge Pump Output |
|
|
587 | (1) |
|
Practical Implementation of the Charge Pump |
|
|
588 | (1) |
|
|
589 | (1) |
|
|
590 | (10) |
|
19.4.1 Clock Recovery from NRZ Data |
|
|
593 | (10) |
|
|
596 | (2) |
|
|
598 | (2) |
|
|
600 | (3) |
|
|
602 | (1) |
|
Practical VCO and VCDL Design |
|
|
602 | (1) |
|
|
603 | (18) |
|
|
603 | (6) |
|
19.6.2 A 1 Gbit/s Clock-Recovery Circuit |
|
|
609 | (12) |
Chapter 20 Current Mirrors |
|
621 | (50) |
|
20.1 The Basic Current Mirror |
|
|
621 | (22) |
|
20.1.1 Long-Channel Design |
|
|
622 | (2) |
|
20.1.2 Matching Currents in the Mirror |
|
|
624 | (4) |
|
Threshold Voltage Mismatch |
|
|
624 | (1) |
|
Transconductance Parameter Mismatch |
|
|
624 | (1) |
|
Drain-to-Source Voltage and Lambda |
|
|
625 | (1) |
|
Layout Techniques to Improve Matching |
|
|
625 | (2) |
|
Layout of the Mirror with Different Widths |
|
|
627 | (1) |
|
20.1.3 Biasing the Current Mirror |
|
|
628 | (6) |
|
Using a MOSFET-Only Reference Circuit |
|
|
629 | (2) |
|
Supply Independent Biasing |
|
|
631 | (3) |
|
20.1.4 Short-Channel Design |
|
|
634 | (4) |
|
|
637 | (1) |
|
20.1.5 Temperature Behavior |
|
|
638 | (4) |
|
Resistor-MOSFET Reference Circuit |
|
|
638 | (1) |
|
MOSFET-Only Reference Circuit |
|
|
639 | (2) |
|
Temperature Behavior of the Beta-Multiplier |
|
|
641 | (1) |
|
Voltage Reference Using the Beta-Multiplier |
|
|
641 | (1) |
|
20.1.6 Biasing in the Subthreshold Region |
|
|
642 | (1) |
|
20.2 Cascoding the Current Mirror |
|
|
643 | (10) |
|
20.2.1 The Simple Cascode |
|
|
643 | (2) |
|
|
643 | (1) |
|
Cascode Output Resistance |
|
|
644 | (1) |
|
20.2.2 Low-Voltage (Wide-Swing) Cascode |
|
|
645 | (3) |
|
An Important Practical Note |
|
|
647 | (1) |
|
|
648 | (1) |
|
20.2.3 Wide-Swing, Short-Channel Design |
|
|
648 | (3) |
|
20.2.4 Regulated Drain Current Mirror |
|
|
651 | (2) |
|
|
653 | (18) |
|
20.3.1 Long-Channel Biasing Circuits |
|
|
653 | (3) |
|
|
653 | (1) |
|
The Folded-Cascode Structure |
|
|
653 | (3) |
|
20.3.2 Short-Channel Biasing CirCuits |
|
|
656 | (1) |
|
|
656 | (1) |
|
|
657 | (14) |
Chapter 21 Amplifiers |
|
671 | (64) |
|
21.1 Gate-Drain Connected Loads |
|
|
671 | (14) |
|
21.1.1 Common-Source (CS) Amplifiers |
|
|
671 | (12) |
|
|
674 | (1) |
|
|
675 | (1) |
|
The Right-Hand Plane Zero |
|
|
675 | (4) |
|
A Common-Source Current Amplifier |
|
|
679 | (2) |
|
Common-Source Amplifier with Source Degeneration |
|
|
681 | (2) |
|
Noise Performance of the CS Amplifier with Gate-Drain Load |
|
|
683 | (1) |
|
21.1.2 The Source Follower (Common-Drain Amplifier) |
|
|
683 | (1) |
|
21.1.3 Common Gate Amplifier |
|
|
684 | (1) |
|
21.2 Current Source Loads |
|
|
685 | (25) |
|
21.2.1 Common-Source Amplifier |
|
|
685 | (13) |
|
|
685 | (1) |
|
|
686 | (1) |
|
|
686 | (1) |
|
High-Impedance and Low-Impedance Nodes |
|
|
687 | (1) |
|
|
687 | (2) |
|
|
689 | (3) |
|
|
692 | (5) |
|
|
697 | (1) |
|
Noise Performance of the CS Amplifier with Current Source Load |
|
|
698 | (1) |
|
21.2.2 The Cascode Amplifier |
|
|
698 | (4) |
|
|
699 | (1) |
|
|
700 | (1) |
|
Noise Performance of the Cascode Amplifier |
|
|
700 | (1) |
|
Operation as a Transimpedance Amplifier |
|
|
701 | (1) |
|
21.2.3 The Common-Gate Amplifier |
|
|
702 | (1) |
|
21.2.4 The Source Follower (Common-Drain Amplifier) |
|
|
702 | (8) |
|
|
703 | (1) |
|
|
704 | (1) |
|
|
705 | (1) |
|
Noise Performance of the SF Amplifier |
|
|
706 | (1) |
|
|
706 | (2) |
|
|
708 | (1) |
|
A Class AB Output Buffer Using SFs |
|
|
709 | (1) |
|
21.3 The Push-Pull Amplifier |
|
|
710 | (25) |
|
21.3.1 DC Operation and Biasing |
|
|
711 | (3) |
|
Power Conversion Efficiency |
|
|
711 | (3) |
|
21.3.2 Small-Signal Analysis |
|
|
714 | (2) |
|
|
716 | (19) |
|
Modeling Distortion with SPICE |
|
|
717 | (18) |
Chapter 22 Differential Amplifiers |
|
735 | (38) |
|
22.1 The Source-Coupled Pair |
|
|
735 | (15) |
|
|
735 | (6) |
|
Maximum and Minimum Differential Input Voltage |
|
|
736 | (1) |
|
Maximum and Minimum Common-Mode Input Voltage |
|
|
737 | (2) |
|
|
739 | (1) |
|
Biasing from the Current Mirror Load |
|
|
740 | (1) |
|
Minimum Power Supply Voltage |
|
|
741 | (1) |
|
|
741 | (4) |
|
AC Gain with a Current Mirror Load |
|
|
742 | (3) |
|
22.1.3 Common-Mode Rejection Ratio |
|
|
745 | (1) |
|
Input-Referred Offset from Finite CMRR |
|
|
746 | (1) |
|
22.1.4 Matching Considerations |
|
|
746 | (3) |
|
Input-Referred Offset with a Current Mirror Load |
|
|
749 | (1) |
|
|
749 | (1) |
|
22.1.6 Slew-Rate Limitations |
|
|
750 | (1) |
|
22.2 The Source Cross-Coupled Pair |
|
|
750 | (6) |
|
Operation of the Diff-Amp |
|
|
751 | (1) |
|
|
752 | (2) |
|
22.2.1 Current Source Load |
|
|
754 | (4) |
|
|
755 | (1) |
|
22.3 Cascode Loads (The Telescopic Diff-Amp) |
|
|
756 | (2) |
|
22.4 Wide-Swing Differential Amplifiers |
|
|
758 | (15) |
|
22.4.1 Current Differential Amplifier |
|
|
760 | (1) |
|
22.4.2 Constant Transconductance Diff-Amp |
|
|
760 | (14) |
|
|
761 | (12) |
Chapter 23 Voltage References |
|
773 | (30) |
|
23.1 MOSFET-Resistor Voltage References |
|
|
774 | (10) |
|
23.1.1 The Resistor-MOSFET Divider |
|
|
774 | (3) |
|
23.1.2 The MOSFET-Only Voltage Divider |
|
|
777 | (1) |
|
23.1.3 Self-Biased Voltage References |
|
|
778 | (6) |
|
Forcing the Same Current through Each Side of the Reference |
|
|
778 | (5) |
|
|
783 | (1) |
|
23.2 Parasitic Diode-Based References |
|
|
784 | (19) |
|
|
785 | (1) |
|
The Bandgap Energy of Silicon |
|
|
786 | (1) |
|
Lower Voltage Reference Design |
|
|
787 | (1) |
|
23.2.1 Long-Channel BGR Design |
|
|
787 | (8) |
|
Diode-Referenced Self-Biasing (CTAT) |
|
|
787 | (2) |
|
Thermal Voltage-Referenced Self-Biasing (PTAT) |
|
|
789 | (3) |
|
|
792 | (1) |
|
Alternative BGR Topologies |
|
|
793 | (2) |
|
23.2.2 Short-Channel BGR Design |
|
|
795 | (62) |
|
|
796 | (1) |
|
|
797 | (6) |
Chapter 24 Operational Amplifiers I |
|
803 | (54) |
|
24.1 The Two-Stage Op-Amp |
|
|
804 | (18) |
|
Low-Frequency, Open Loop Gain, AoLDc |
|
|
804 | (1) |
|
|
804 | (1) |
|
|
805 | (1) |
|
Output Swing and Current Source/Sinking Capability |
|
|
805 | (1) |
|
|
805 | (1) |
|
|
806 | (4) |
|
|
810 | (1) |
|
|
811 | (1) |
|
Compensation for High-Speed Operation |
|
|
812 | (4) |
|
|
816 | (2) |
|
Common-Mode Rejection Ratio (CMRR) |
|
|
818 | (1) |
|
Power Supply Rejection Ratio (PSBR) |
|
|
819 | (1) |
|
Increasing the Input Common-Mode Voltage Range |
|
|
820 | (1) |
|
Estimating Bandwidth in Op-Amps Circuits |
|
|
821 | (1) |
|
24.2 An Op-Amp with Output Buffer |
|
|
822 | (2) |
|
|
822 | (2) |
|
24.3 The Operational Transconductance Amplifier (OTA) |
|
|
824 | (11) |
|
Unity-Gain Frequency, fun |
|
|
825 | (1) |
|
Increasing the OTA Output Resistance |
|
|
826 | (1) |
|
|
827 | (1) |
|
OTA with an Output Buffer (An Op-Amp) |
|
|
828 | (2) |
|
The Folded-Cascode OTA and Op-Amp |
|
|
830 | (5) |
|
|
835 | (4) |
|
Bandwidth of the Added GE Amplifiers |
|
|
837 | (1) |
|
Compensating the Added GE Amplifiers |
|
|
838 | (1) |
|
24.5 Some Examples and Discussions |
|
|
839 | (18) |
|
|
839 | (5) |
|
|
844 | (2) |
|
Three-Stage Op-Amp Design |
|
|
846 | (11) |
Chapter 25 Dynamic Analog Circuits |
|
857 | (32) |
|
|
857 | (7) |
|
|
858 | (1) |
|
|
859 | (1) |
|
Reduction of Charge Injection and Clock Feedthrough |
|
|
860 | (1) |
|
|
861 | (1) |
|
25.1.1 Sample-and-Hold Circuits |
|
|
861 | (3) |
|
25.2 Fully-Differential Circuits |
|
|
864 | (5) |
|
|
864 | (1) |
|
|
864 | (1) |
|
|
865 | (1) |
|
Other Benefits of Fully-Differential Op-Amps |
|
|
865 | (1) |
|
25.2.1 A Fully-Differential Sample-and-Hold |
|
|
866 | (3) |
|
Connecting the Inputs to the Bottom (Poly1) Plate |
|
|
867 | (1) |
|
|
868 | (1) |
|
|
868 | (1) |
|
25.3 Switched-Capacitor Circuits |
|
|
869 | (10) |
|
25.3.1 Switched-Capacitor Integrator |
|
|
871 | (18) |
|
|
872 | (1) |
|
Other Integrator Configurations |
|
|
872 | (4) |
|
Exact Frequency Response of a Switched-Capacitor Integrator |
|
|
876 | (1) |
|
|
877 | (1) |
|
|
878 | (1) |
|
|
879 | (10) |
|
Reducing Offset Voltage of an Op-Amp |
|
|
879 | (1) |
|
|
880 | (2) |
|
|
882 | (2) |
|
|
884 | (5) |
Chapter 26 Operational Amplifiers II |
|
889 | (44) |
|
26.1 Biasing for Power and Speed |
|
|
889 | (3) |
|
26.1.1 Device Characteristics |
|
|
890 | (1) |
|
|
891 | (42) |
|
Layout of Differential Op-Amps |
|
|
891 | (1) |
|
|
891 | (1) |
|
|
892 | (8) |
|
|
892 | (1) |
|
|
893 | (1) |
|
A Single Bias Input Diff-Amp |
|
|
894 | (1) |
|
The Diff-Amp's Tail Current Source |
|
|
895 | (1) |
|
|
895 | (1) |
|
Compensating the CMFB Loop |
|
|
896 | (2) |
|
Extending the CMFB Amplifier Input Range |
|
|
898 | (1) |
|
|
899 | (1) |
|
|
900 | (20) |
|
The Differential Amplifier |
|
|
902 | (1) |
|
Adding a Second Stage (Making an Op-Amp) |
|
|
903 | (1) |
|
|
904 | (1) |
|
|
905 | (2) |
|
|
907 | (1) |
|
The Two-Stage Op-Amp with CMFB |
|
|
908 | (1) |
|
|
909 | (1) |
|
|
910 | (1) |
|
Using MOSFETs Operating in the Triode Region |
|
|
911 | (1) |
|
|
912 | (1) |
|
Lowering Input Capacitance |
|
|
912 | (1) |
|
Making the Op-Amp More Practical |
|
|
913 | (1) |
|
Increasing the Op-Amp's Open-Loop Gain |
|
|
914 | (2) |
|
|
916 | (1) |
|
Op-Amp Offset Effects on Outputs |
|
|
916 | (2) |
|
Single-Ended to Differential Conversion |
|
|
918 | (1) |
|
|
919 | (1) |
|
CMFB in the Output Buffer (Fig. 26.43) or the Diff-Amp (Fig. 26.40)? |
|
|
919 | (1) |
|
26.4 Op-Amp Design Using Switched-Capacitor CMFB |
|
|
920 | (13) |
|
|
920 | (1) |
|
|
921 | (1) |
|
|
921 | (3) |
|
|
924 | (1) |
|
An Application of the Op-Amp |
|
|
925 | (1) |
|
|
925 | (2) |
|
A Final Note Concerning Biasing |
|
|
927 | (6) |
Chapter 27 Nonlinear Analog Circuits |
|
933 | (22) |
|
27.1 Basic CMOS Comparator Design |
|
|
933 | (10) |
|
|
934 | (1) |
|
|
935 | (2) |
|
|
937 | (2) |
|
27.1.1 Characterizing the Comparator |
|
|
939 | (3) |
|
Comparator DC Performance |
|
|
939 | (1) |
|
|
940 | (1) |
|
|
941 | (1) |
|
|
942 | (1) |
|
27.1.2 Clocked Comparators |
|
|
942 | (1) |
|
27.1.3 Input Buffers Revisited |
|
|
943 | (1) |
|
|
943 | (3) |
|
|
946 | (9) |
|
27.3.1 The Multiplying Quad |
|
|
947 | (4) |
|
Simulating the Operation of the Multiplier |
|
|
949 | (2) |
|
27.3.2 Multiplier Design Using Squaring Circuits |
|
|
951 | (4) |
Chapter 28 Data Converter Fundamentals |
|
955 | (32) |
|
|
28.1 Analog Versus Discrete Time Signals |
|
|
955 | (1) |
|
28.2 Converting Analog Signals to Digital Signals |
|
|
956 | (3) |
|
28.3 Sample-and-Hold (S/H) Characteristics |
|
|
959 | (2) |
|
|
959 | (1) |
|
|
960 | (1) |
|
|
960 | (1) |
|
28.4 Digital-to-Analog Converter (DAC) Specifications |
|
|
961 | (9) |
|
Differential Nonlinearity |
|
|
964 | (2) |
|
|
966 | (2) |
|
|
968 | (1) |
|
|
969 | (1) |
|
|
969 | (1) |
|
Signal-to-Noise Ratio (SNR) |
|
|
969 | (1) |
|
|
969 | (1) |
|
28.5 Analog-to-Digital Converter (ADC) Specifications |
|
|
970 | (9) |
|
|
971 | (1) |
|
Differential Nonlinearity |
|
|
972 | (2) |
|
|
974 | (1) |
|
|
974 | (1) |
|
|
975 | (1) |
|
|
976 | (2) |
|
|
978 | (1) |
|
|
979 | (1) |
|
28.6 Mixed-Signal Layout Issues |
|
|
979 | (8) |
|
|
980 | (1) |
|
Power Supply and Ground Issues |
|
|
980 | (2) |
|
Fully Differential Design |
|
|
982 | (1) |
|
|
982 | (1) |
|
|
983 | (1) |
|
Other Interconnect Considerations |
|
|
984 | (3) |
Chapter 29 Data Converter Architectures |
|
987 | (56) |
|
|
|
987 | (19) |
|
29.1.1 Digital Input Code |
|
|
987 | (1) |
|
|
987 | (5) |
|
Mismatch Errors Related to the Resistor-String DAC |
|
|
990 | (1) |
|
Integral Nonlinearity of the Resistor-String DAC |
|
|
991 | (1) |
|
Differential Nonlinearity of the Worst-Case Resistor String DAC |
|
|
992 | (1) |
|
29.1.3 R-2R Ladder Networks |
|
|
992 | (3) |
|
|
995 | (4) |
|
Mismatch Errors Related to Current-Steering DACs |
|
|
997 | (2) |
|
29.1.5 Charge-Scaling DACs |
|
|
999 | (4) |
|
Layout Considerations for a Binary-Weighted Capacitor Array |
|
|
1001 | (1) |
|
|
1002 | (1) |
|
|
1003 | (2) |
|
|
1005 | (1) |
|
|
1006 | (37) |
|
|
1006 | (4) |
|
Accuracy Issues for the Flash ADC |
|
|
1007 | (3) |
|
29.2.2 The Two-Step Flash ADC |
|
|
1010 | (4) |
|
Accuracy Issues Related to the Two-Step Flash Converter |
|
|
1012 | (1) |
|
Accuracy Issues Related to Operational Amplifiers |
|
|
1013 | (1) |
|
|
1014 | (4) |
|
Accuracy Issues Related to the Pipeline Converter |
|
|
1016 | (2) |
|
|
1018 | (4) |
|
Single-Slope Architecture |
|
|
1018 | (2) |
|
Accuracy Issues Related to the Single-Slope ADC |
|
|
1020 | (1) |
|
|
1020 | (2) |
|
Accuracy Issues Related to the Dual-Slope ADC |
|
|
1022 | (1) |
|
29.2.5 The Successive Approximation ADC |
|
|
1022 | (5) |
|
The Charge-Redistribution Successive Approximation ADC |
|
|
1025 | (1) |
|
Accuracy Issues Related to the Charge Redistribution, Successive-Approximation ADC |
|
|
1026 | (1) |
|
29.2.6 The Oversampling ADC |
|
|
1027 | (20) |
|
Differences in Nyquist Rate and Oversampled ADCs |
|
|
1027 | (2) |
|
The First-Order ΣΔ Modulator |
|
|
1029 | (4) |
|
The Higher Order ΣΔ Modulators |
|
|
1033 | (10) |
Chapter 30 Implementing Data Converters |
|
1043 | (72) |
|
30.1 R-2R Topologies for DACs |
|
|
1043 | (20) |
|
30.1.1 The Current-Mode R-2R DAC |
|
|
1044 | (1) |
|
30.1.2 The Voltage-Mode R-2R DAC |
|
|
1045 | (2) |
|
30.1.3 A Wide-Swing Current-Mode R-2R DAC |
|
|
1047 | (10) |
|
|
1048 | (1) |
|
|
1049 | (1) |
|
|
1049 | (1) |
|
|
1050 | (1) |
|
Improving DNL (Segmentation) |
|
|
1051 | (1) |
|
|
1052 | (3) |
|
|
1055 | (1) |
|
Improving INL by Calibration |
|
|
1055 | (2) |
|
30.1.4 Topologies Without an Op-Amp |
|
|
1057 | (6) |
|
|
1057 | (3) |
|
Two Important Notes Concerning Glitches |
|
|
1060 | (1) |
|
The Current-Mode (Current Steering) DAC |
|
|
1061 | (2) |
|
30.2 Op-Amps in Data Converters |
|
|
1063 | (7) |
|
Gain Bandwidth Product of the Noninverting Op-Amp Topology |
|
|
1064 | (1) |
|
Gain Bandwidth Product of the Inverting Op-Amp Topology |
|
|
1064 | (2) |
|
|
1066 | (1) |
|
30.2.2 Op-Amp Unity Gain Frequency |
|
|
1067 | (1) |
|
|
1067 | (3) |
|
Adding an Auxiliary Input Port |
|
|
1067 | (3) |
|
|
1070 | (45) |
|
30.3.1 Implementing the S/H |
|
|
1071 | (6) |
|
A Single-Ended to Differential Output S/H |
|
|
1073 | (4) |
|
|
1077 | (7) |
|
|
1078 | (2) |
|
Implementing Subtraction in the S/H |
|
|
1080 | (2) |
|
Understanding Output Swing |
|
|
1082 | (2) |
|
|
1084 | (31) |
|
|
1085 | (7) |
|
Capacitor Error Averaging |
|
|
1092 | (6) |
|
|
1098 | (1) |
|
|
1099 | (1) |
|
Offsets and Alternative Design Topologies |
|
|
1100 | (5) |
|
|
1105 | (2) |
|
|
1107 | (8) |
Chapter 31 Feedback Amplifiers |
|
1115 | (60) |
|
|
31.1 The Feedback Equation |
|
|
1115 | (2) |
|
31.2 Properties of Negative Feedback on Amplifier Design |
|
|
1117 | (3) |
|
31.2.1 Gain Desensitivity |
|
|
1117 | (1) |
|
31.2.2 Bandwidth Extension |
|
|
1117 | (1) |
|
31.2.3 Reduction in Nonlinear Distortion |
|
|
1118 | (2) |
|
31.2.4 Input and Output Impedance Control |
|
|
1120 | (1) |
|
31.3 Recognizing Feedback Topologies |
|
|
1120 | (8) |
|
|
1121 | (1) |
|
|
1121 | (1) |
|
31.3.3 The Feedback Network |
|
|
1122 | (3) |
|
|
1123 | (1) |
|
Counting Inversions Around the Loop |
|
|
1124 | (1) |
|
Examples of Recognizing Feedback Topologies |
|
|
1124 | (1) |
|
31.3.4 Calculating Open-Loop Parameters |
|
|
1125 | (2) |
|
31.3.5 Calculating Closed-Loop Parameters |
|
|
1127 | (1) |
|
31.4 The Voltage Amp (Series-Shunt Feedback) |
|
|
1128 | (6) |
|
31.5 The Transimpedance Amp (Shunt-Shunt Feedback) |
|
|
1134 | (8) |
|
31.5.1 Simple Feedback Using a Gate-Drain Resistor |
|
|
1140 | (2) |
|
31.6 The Transconductance Amp (Series-Series Feedback) |
|
|
1142 | (4) |
|
31.7 The Current Amplifier (Shunt-Series Feedback) |
|
|
1146 | (2) |
|
|
1148 | (6) |
|
|
1151 | (3) |
|
|
1154 | (22) |
|
31.9.1 Voltage Amplifiers |
|
|
1154 | (4) |
|
|
1156 | (2) |
|
31.9.2 A Transimpedance Amplifier |
|
|
1158 | (17) |
Chapter 32 Hysteretic Power Converters |
|
1175 | (44) |
|
32.1 A Review of Power and Energy Basics |
|
|
1176 | (13) |
|
|
1177 | (1) |
|
32.1.1 Energy Storage in Inductors and Capacitors |
|
|
1177 | (3) |
|
Energy Storage in an Inductor |
|
|
1178 | (1) |
|
Energy Storage in a Capacitor |
|
|
1178 | (2) |
|
32.1.2 Energy Use in Transmitting Data |
|
|
1180 | (1) |
|
32.1.3 Selection and use of Switches |
|
|
1181 | (8) |
|
|
1183 | (1) |
|
Effective Digital Resistance, A Comment |
|
|
1184 | (1) |
|
|
1184 | (1) |
|
|
1184 | (5) |
|
32.2 Switching Power Supplies: Some Examples |
|
|
1189 | (21) |
|
|
1189 | (7) |
|
|
1191 | (1) |
|
|
1191 | (4) |
|
|
1195 | (1) |
|
|
1196 | (4) |
|
|
1197 | (1) |
|
|
1197 | (3) |
|
|
1200 | (4) |
|
Quick Review of Transformers |
|
|
1200 | (1) |
|
Operation of the Flyback SPS |
|
|
1201 | (3) |
|
32.2.4 Pulse Width Modulation: A Control Loop Example |
|
|
1204 | (6) |
|
|
1206 | (1) |
|
|
1207 | (1) |
|
|
1208 | (1) |
|
Effective Series Resistance |
|
|
1209 | (1) |
|
|
1210 | (1) |
|
|
1210 | (9) |
|
|
1211 | (1) |
|
|
1212 | (7) |
|
|
1212 | (1) |
|
|
1213 | (1) |
|
|
1214 | (2) |
|
|
1216 | (3) |
Index |
|
1219 | (16) |
About the Author |
|
1235 | |