Preface |
|
xv | |
|
|
1 | (10) |
|
1.1 From Fundamental to Applied |
|
|
2 | (1) |
|
1.2 Part I: Color Fundamentals |
|
|
3 | (1) |
|
1.3 Part II: Photometric Invariance |
|
|
3 | (1) |
|
1.3.1 Invariance Based on Physical Properties |
|
|
4 | (1) |
|
1.3.2 Invariance By Machine Learning |
|
|
4 | (1) |
|
1.4 Part III: Color Constancy |
|
|
4 | (1) |
|
1.5 Part IV: Color Feature Extraction |
|
|
5 | (2) |
|
1.5.1 From Luminance to Color |
|
|
5 | (1) |
|
1.5.2 Features, Descriptors, and Saliency |
|
|
6 | (1) |
|
|
6 | (1) |
|
|
7 | (2) |
|
1.6.1 Retrieval and Visual Exploration |
|
|
7 | (1) |
|
|
7 | (1) |
|
1.6.3 Multispectral Applications |
|
|
8 | (1) |
|
|
9 | (2) |
|
PART I Color Fundamentals |
|
|
11 | (36) |
|
|
13 | (13) |
|
|
13 | (1) |
|
2.2 Stages of Color Information Processing |
|
|
14 | (4) |
|
|
14 | (1) |
|
2.2.2 Retina: Rods and Cones |
|
|
14 | (2) |
|
2.2.3 Ganglion Cells and Receptive Fields |
|
|
16 | (1) |
|
2.2.4 LGN and Visual Cortex |
|
|
16 | (2) |
|
2.3 Chromatic Properties of the Visual System |
|
|
18 | (6) |
|
2.3.1 Chromatic Adaptation |
|
|
18 | (1) |
|
2.3.2 Human Color Constancy |
|
|
18 | (2) |
|
2.3.3 Spatial Interactions |
|
|
20 | (3) |
|
2.3.4 Chromatic Discrimination and Color Deficiency |
|
|
23 | (1) |
|
|
24 | (2) |
|
|
26 | (21) |
|
3.1 Lambertian Reflection Model |
|
|
28 | (1) |
|
3.2 Dichromatic Reflection Model |
|
|
29 | (3) |
|
|
32 | (2) |
|
|
34 | (2) |
|
|
36 | (8) |
|
|
36 | (2) |
|
|
38 | (2) |
|
3.5.3 Opponent Color Spaces |
|
|
40 | (1) |
|
3.5.4 Perceptually Uniform Color Spaces |
|
|
41 | (1) |
|
3.5.5 Intuitive Color Spaces |
|
|
42 | (2) |
|
|
44 | (3) |
|
PART II Photometric Invariance |
|
|
47 | (88) |
|
4 Pixel-Based Photometric Invariance |
|
|
49 | (20) |
|
4.1 Normalized Color Spaces |
|
|
50 | (2) |
|
4.2 Opponent Color Spaces |
|
|
52 | (1) |
|
|
52 | (1) |
|
4.4 Composed Color Spaces |
|
|
53 | (5) |
|
4.4.1 Body Reflectance Invariance |
|
|
53 | (2) |
|
4.4.2 Body and Surface Reflectance Invariance |
|
|
55 | (3) |
|
4.5 Noise Stability and Histogram Construction |
|
|
58 | (6) |
|
|
58 | (2) |
|
4.5.2 Examples of Noise Propagation through Transformed Colors |
|
|
60 | (1) |
|
4.5.3 Histogram Construction by Variable Kernel Density Estimation |
|
|
61 | (3) |
|
4.6 Application: Color-Based Object Recognition |
|
|
64 | (4) |
|
4.6.1 Dataset and Performance Measure |
|
|
64 | (1) |
|
4.6.2 Robustness Against Noise: Simulated Data |
|
|
65 | (3) |
|
|
68 | (1) |
|
5 Photometric Invariance from Color Ratios |
|
|
69 | (12) |
|
5.1 Illuminant Invariant Color Ratios |
|
|
71 | (2) |
|
5.2 Illuminant Invariant Edge Detection |
|
|
73 | (1) |
|
5.3 Blur-Robust and Color Constant Image Description |
|
|
74 | (3) |
|
5.4 Application: Image Retrieval Based on Color Ratios |
|
|
77 | (3) |
|
5.4.1 Robustness to Illuminant Color |
|
|
77 | (1) |
|
5.4.2 Robustness to Gaussian Blur |
|
|
78 | (1) |
|
5.4.3 Robustness to Real-World Blurring Effects |
|
|
78 | (2) |
|
|
80 | (1) |
|
6 Derivative-Based Photometric Invariance |
|
|
81 | (32) |
|
6.1 Full Photometric Invariants |
|
|
84 | (17) |
|
6.1.1 The Gaussian Color Model |
|
|
84 | (4) |
|
6.1.2 The Gaussian Color Model by an RGB Camera |
|
|
88 | (1) |
|
6.1.3 Derivatives in the Gaussian Color Model |
|
|
89 | (1) |
|
6.1.4 Differential Invariants for the Lambertian Reflection Model |
|
|
90 | (5) |
|
6.1.5 Differential Invariants for the Dichromatic Reflection Model |
|
|
95 | (3) |
|
6.1.6 Summary of Full Color Invariants |
|
|
98 | (2) |
|
6.1.7 Geometrical Color Invariants in Two Dimensions |
|
|
100 | (1) |
|
|
101 | (10) |
|
6.2.1 Edges in the Dichromatic Reflection Model |
|
|
101 | (2) |
|
6.2.2 Photometric Variants and Quasi-Invariants |
|
|
103 | (1) |
|
6.2.3 Relations of Quasi-Invariants with Full Invariants |
|
|
104 | (4) |
|
6.2.4 Localization and Discriminative Power of Full and Quasi-Invariants |
|
|
108 | (3) |
|
|
111 | (2) |
|
7 Photometric Invariance by Machine Learning |
|
|
113 | (22) |
|
7.1 Learning from Diversified Ensembles |
|
|
114 | (5) |
|
7.2 Temporal Ensemble Learning |
|
|
119 | (1) |
|
7.3 Learning Color Invariants for Region Detection |
|
|
120 | (4) |
|
|
124 | (10) |
|
|
124 | (1) |
|
7.4.2 Skin Detection: Still Images |
|
|
125 | (4) |
|
7.4.3 Road Detection in Video Sequences |
|
|
129 | (5) |
|
|
134 | (1) |
|
|
135 | (52) |
|
8 Illuminant Estimation and Chromatic Adaptation |
|
|
137 | (6) |
|
8.1 Illuminant Estimation |
|
|
139 | (2) |
|
|
141 | (2) |
|
9 Color Constancy Using Low-level Features |
|
|
143 | (9) |
|
|
143 | (3) |
|
|
146 | (4) |
|
9.3 Physics-Based Methods |
|
|
150 | (1) |
|
|
151 | (1) |
|
10 Color Constancy Using Gamut-Based Methods |
|
|
152 | (9) |
|
10.1 Gamut Mapping Using Derivative Structures |
|
|
155 | (2) |
|
10.1.1 Diagonal-Offset Model |
|
|
155 | (1) |
|
10.1.2 Gamut Mapping of Linear Combinations of Pixel Values |
|
|
155 | (2) |
|
|
157 | (1) |
|
10.2 Combination of Gamut Mapping Algorithms |
|
|
157 | (3) |
|
10.2.1 Combining Feasible Sets |
|
|
159 | (1) |
|
10.2.2 Combining Algorithm Outputs |
|
|
159 | (1) |
|
|
160 | (1) |
|
11 Color Constancy Using Machine Learning |
|
|
161 | (11) |
|
11.1 Probabilistic Approaches |
|
|
161 | (1) |
|
11.2 Combination Using Output Statistics |
|
|
162 | (1) |
|
11.3 Combination Using Natural Image Statistics |
|
|
163 | (4) |
|
11.3.1 Spatial Image Structures |
|
|
164 | (1) |
|
11.3.2 Algorithm Selection |
|
|
165 | (2) |
|
11.4 Methods Using Semantic Information |
|
|
167 | (4) |
|
11.4.1 Using Scene Categories |
|
|
167 | (2) |
|
11.4.2 Using High-Level Visual Information |
|
|
169 | (2) |
|
|
171 | (1) |
|
12 Evaluation of Color Constancy Methods |
|
|
172 | (15) |
|
|
172 | (3) |
|
12.1.1 Hyperspectral Data |
|
|
173 | (1) |
|
|
173 | (1) |
|
|
174 | (1) |
|
12.2 Performance Measures |
|
|
175 | (5) |
|
12.2.1 Mathematical Distances |
|
|
176 | (1) |
|
12.2.2 Perceptual Distances |
|
|
176 | (1) |
|
12.2.3 Color Constancy Distances |
|
|
177 | (1) |
|
12.2.4 Perceptual Analysis |
|
|
178 | (2) |
|
|
180 | (5) |
|
12.3.1 Comparing Algorithm Performance |
|
|
181 | (1) |
|
|
182 | (3) |
|
|
185 | (2) |
|
PART IV Color Feature Extraction |
|
|
187 | (82) |
|
13 Color Feature Detection |
|
|
189 | (32) |
|
|
191 | (14) |
|
13.1.1 Photometric Invariant Derivatives |
|
|
193 | (2) |
|
13.1.2 Invariance to Color Coordinate Transformations |
|
|
195 | (1) |
|
13.1.3 Robust Full Photometric Invariance |
|
|
196 | (1) |
|
13.1.4 Color-Tensor-Based Features |
|
|
197 | (7) |
|
13.1.5 Experiment: Robust Feature Point Detection and Extraction |
|
|
204 | (1) |
|
|
205 | (13) |
|
13.2.1 Color Distinctiveness |
|
|
207 | (1) |
|
13.2.2 Physics-Based Decorrelation |
|
|
208 | (3) |
|
13.2.3 Statistics of Color Images |
|
|
211 | (1) |
|
13.2.4 Boosting Color Saliency |
|
|
212 | (2) |
|
13.2.5 Evaluation of Color Distinctiveness |
|
|
214 | (1) |
|
|
215 | (3) |
|
13.2.7 Illustrations of Generality |
|
|
218 | (1) |
|
|
218 | (3) |
|
14 Color Feature Description |
|
|
221 | (23) |
|
14.1 Gaussian Derivative-Based Descriptors |
|
|
225 | (4) |
|
14.2 Discriminative Power |
|
|
229 | (6) |
|
|
235 | (1) |
|
|
236 | (7) |
|
14.4.1 Experimental Results |
|
|
242 | (1) |
|
|
243 | (1) |
|
15 Color Image Segmentation |
|
|
244 | (25) |
|
15.1 Color Gabor Filtering |
|
|
245 | (2) |
|
15.2 Invariant Gabor Filters Under Lambertian Reflection |
|
|
247 | (1) |
|
15.3 Color-Based Texture Segmentation |
|
|
247 | (2) |
|
15.4 Material Recognition Using Invariant Anisotropic Filtering |
|
|
249 | (7) |
|
|
253 | (1) |
|
15.4.2 MR8-INC Filterbank |
|
|
254 | (1) |
|
15.4.3 MR8-LINC Filterbank |
|
|
255 | (1) |
|
15.4.4 MR8-SLINC Filterbank |
|
|
255 | (1) |
|
15.4.5 Summary of Filterbank Properties |
|
|
256 | (1) |
|
15.5 Color Invariant Codebooks and Material-Specific Adaptation |
|
|
256 | (2) |
|
|
258 | (5) |
|
15.6.1 Material Classification by Color Invariant Codebooks |
|
|
258 | (2) |
|
15.6.2 Color-Texture Segmentation of Material Images |
|
|
260 | (2) |
|
15.6.3 Material Classification by Adaptive Color Invariant Codebooks |
|
|
262 | (1) |
|
15.7 Image Segmentation by Delaunay Triangulation |
|
|
263 | (5) |
|
15.7.1 Homogeneity Based on Photometric Color Invariance |
|
|
264 | (1) |
|
15.7.2 Homogeneity Based on a Similarity Predicate |
|
|
265 | (1) |
|
15.7.3 Difference Measure |
|
|
265 | (2) |
|
15.7.4 Segmentation Results |
|
|
267 | (1) |
|
|
268 | (1) |
|
|
269 | (70) |
|
16 Object and Scene Recognition |
|
|
271 | (16) |
|
|
272 | (1) |
|
16.2 Color SIFT Descriptors |
|
|
273 | (3) |
|
16.3 Object and Scene Recognition |
|
|
276 | (4) |
|
16.3.1 Feature Extraction Pipelines |
|
|
276 | (1) |
|
|
277 | (1) |
|
16.3.3 Image Benchmark: PASCAL Visual Object Classes Challenge |
|
|
278 | (1) |
|
16.3.4 Video Benchmark: Mediamill Challenge |
|
|
279 | (1) |
|
16.3.5 Evaluation Criteria |
|
|
279 | (1) |
|
|
280 | (5) |
|
16.4.1 Image Benchmark: PASCAL VOC Challenge |
|
|
280 | (2) |
|
16.4.2 Video Benchmark: Mediamill Challenge |
|
|
282 | (1) |
|
|
283 | (2) |
|
|
285 | (2) |
|
|
287 | (31) |
|
|
288 | (3) |
|
17.2 Color Names from Calibrated Data |
|
|
291 | (13) |
|
17.2.1 Fuzzy Color Naming |
|
|
293 | (1) |
|
17.2.2 Chromatic Categories |
|
|
294 | (4) |
|
17.2.3 Achromatic Categories |
|
|
298 | (2) |
|
17.2.4 Fuzzy Sets Estimation |
|
|
300 | (4) |
|
17.3 Color Names from Uncalibrated Data |
|
|
304 | (9) |
|
17.3.1 Color Name Data Sets |
|
|
306 | (1) |
|
17.3.2 Learning Color Names |
|
|
307 | (4) |
|
17.3.3 Assigning Color Names in Test Images |
|
|
311 | (1) |
|
17.3.4 Flexibility Color Name Data Set |
|
|
312 | (1) |
|
17.4 Experimental Results |
|
|
313 | (3) |
|
|
316 | (2) |
|
18 Segmentation of Multispectral Images |
|
|
318 | (21) |
|
18.1 Reflection and Camera Models |
|
|
319 | (2) |
|
18.1.1 Multispectral Imaging |
|
|
319 | (1) |
|
18.1.2 Camera and Image Formation Models |
|
|
319 | (1) |
|
|
320 | (1) |
|
18.2 Photometric Invariant Distance Measures |
|
|
321 | (4) |
|
18.2.1 Distance between Chromaticity Polar Angles |
|
|
321 | (1) |
|
18.2.2 Distance between Hue Polar Angles |
|
|
322 | (3) |
|
|
325 | (1) |
|
|
325 | (3) |
|
18.3.1 Propagation of Uncertainties due to Photon Noise |
|
|
325 | (1) |
|
18.3.2 Propagation of Uncertainty |
|
|
326 | (2) |
|
18.4 Photometric Invariant Region Detection by Clustering |
|
|
328 | (2) |
|
18.4.1 Robust K-Means Clustering |
|
|
328 | (1) |
|
18.4.2 Photometric Invariant Segmentation |
|
|
329 | (1) |
|
|
330 | (8) |
|
18.5.1 Propagation of Uncertainties in Transformed Spectra |
|
|
331 | (3) |
|
18.5.2 Photometric Invariant Clustering |
|
|
334 | (4) |
|
|
338 | (1) |
Citation Guidelines |
|
339 | (2) |
References |
|
341 | (22) |
Index |
|
363 | |