Muutke küpsiste eelistusi

Combinatorics of Finite Sets New edition [Pehme köide]

  • Formaat: Paperback / softback, 264 pages, kõrgus x laius: 230x155 mm, kaal: 435 g, bibliography
  • Ilmumisaeg: 01-Apr-1989
  • Kirjastus: Clarendon Press
  • ISBN-10: 0198533799
  • ISBN-13: 9780198533795
Teised raamatud teemal:
  • Pehme köide
  • Hind: 26,00 €*
  • * saadame teile pakkumise kasutatud raamatule, mille hind võib erineda kodulehel olevast hinnast
  • See raamat on trükist otsas, kuid me saadame teile pakkumise kasutatud raamatule.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Lisa soovinimekirja
Combinatorics of Finite Sets New edition
  • Formaat: Paperback / softback, 264 pages, kõrgus x laius: 230x155 mm, kaal: 435 g, bibliography
  • Ilmumisaeg: 01-Apr-1989
  • Kirjastus: Clarendon Press
  • ISBN-10: 0198533799
  • ISBN-13: 9780198533795
Teised raamatud teemal:
The combinatorial study of finite set systems is a lively area of research unified by the gradual discovery of structural insights and widely applicable proof techniques. This book is the first coherent and up-to-date account of the basic methods and results of this study. Much of the material in the book concerns subsets of a set, but chapters also cover more general partially ordered sets. For example, the Clements-Lindstrom extension of the Kruskal-Katona theorem to multisets is discussed, as is the Greene-Kleitman result concerning k-saturated chain partitions of general partially ordered sets. Connections with Dilworth's theorem, the marriage problem, and probability are presented. Each chapter ends with a collection of exercises for which outline solutions are provided, and there is an extensive bibliography. The work is important for postgraduate students and researchers in discrete mathematics and related subjects.
Introduction and Sperner's theorem; Normalized matchings and rank
numbers; Symmetric chains; Rank numbers for multisets; Intersecting systems
and the Erd "os-Ko-Rado theorem; Ideals and a lemma of Kleitman; The
Kruskal-Katona theorem; Antichains; The generalized Macaulay theorem for
multisets; Theorems for multisets; The Littlewood-Offord problem;
Miscellaneous methods; Lattices of antichains and saturated chain partitions;
Hints and solutions.