Muutke küpsiste eelistusi

Combining Artificial Neural Nets: Ensemble and Modular Multi-Net Systems [Pehme köide]

  • Formaat: Paperback / softback, 298 pages, kõrgus x laius: 235x155 mm, kaal: 482 g, 6 Illustrations, black and white; XV, 298 p. 6 illus., 1 Paperback / softback
  • Sari: Perspectives in Neural Computing
  • Ilmumisaeg: 22-Jan-1999
  • Kirjastus: Springer London Ltd
  • ISBN-10: 185233004X
  • ISBN-13: 9781852330040
Teised raamatud teemal:
  • Pehme köide
  • Hind: 95,02 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 111,79 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 298 pages, kõrgus x laius: 235x155 mm, kaal: 482 g, 6 Illustrations, black and white; XV, 298 p. 6 illus., 1 Paperback / softback
  • Sari: Perspectives in Neural Computing
  • Ilmumisaeg: 22-Jan-1999
  • Kirjastus: Springer London Ltd
  • ISBN-10: 185233004X
  • ISBN-13: 9781852330040
Teised raamatud teemal:
The past decade could be seen as the heyday of neurocomputing: in which the capabilities of monolithic nets have been well explored and exploited. The question then is where do we go from here? A logical next step is to examine the potential offered by combinations of artificial neural nets, and it is that step that the chapters in this volume represent. Intuitively, it makes sense to look at combining ANNs. Clearly complex biological systems and brains rely on modularity. Similarly the principles of modularity, and of reliability through redundancy, can be found in many disparate areas, from the idea of decision by jury, through to hardware re­ dundancy in aeroplanes, and the advantages of modular design and reuse advocated by object-oriented programmers. And it is not surprising to find that the same principles can be usefully applied in the field of neurocomput­ ing as well, although finding the best way of adapting them is a subject of on-going research.

Muu info

Springer Book Archives
1. Multi-Net Systems.- 1.0.1 Different Forms of Multi-Net System.- 1.1
Ensembles.- 1.2 Modular Approaches.- 1.3 The
Chapters in this Book.- 1.4
References.-
2. Combining Predictors.- 2.1 Combine and Conquer.- 2.2
Regression.- 2.3 Classification.- 2.4 Remarks.- 2.5 Adaboost and Arcing.- 2.6
Recent Research.- 2.7 Coda.- 2.8 References.-
3. Boosting Using Neural
Networks.- 3.1 Introduction.- 3.2 Bagging.- 3.3 Boosting.- 3.4 Other Ensemble
Techniques.- 3.5 Neural Networks.- 3.6 Trees.- 3.7 Trees vs. Neural Nets.-
3.8 Experiments.- 3.9 Conclusions.- 3.10 References.-
4. A Genetic Algorithm
Approach for Creating Neural Network Ensembles.- 4.1 Introduction.- 4.2
Neural Network Ensembles.- 4.3 The ADDEMUP Algorithm.- 4.4 Experimental
Study.- 4.5 Discussion and Future Work.- 4.6 Additional Related Work.- 4.7
Conclusions.- 4.8 References.-
5. Treating Harmful Collinearity in Neural
Network Ensembles.- 5.1 Introduction.- 5.2 Overview of Optimal Linear
Combinations (OLC) of Neural Networks.- 5.3 Effects of Collinearity on
Combining Neural Networks.- 5.4 Improving the Generalisation of NN Ensembles
by Treating Harmful Collinearity.- 5.5 Experimental Results.- 5.6 Concluding
Remarks.- 5.7 References.-
6. Linear and Order Statistics Combiners for
Pattern Classification.- 6.1 Introduction.- 6.2 Class Boundary Analysis and
Error Regions.- 6.3 Linear Combining.- 6.4 Order Statistics.- 6.5 Correlated
Classifier Combining.- 6.6 Experimental Combining Results.- 6.7 Discussion.-
6.8 References.-
7. Variance Reduction via Noise and Bias Constraints.- 7.1
Introduction.- 7.2 Theoretical Considerations.- 7.3 The BootstrapEnsemble
with Noise Algorithm.- 7.4 Results on the TwoSpirals Problem.- 7.5
Discussion.- 7.6 References.-
8. A Comparison of Visual Cue Combination
Models.- 8.1Introduction.- 8.2 Stimulus.- 8.3 Tasks.- 8.4 Models of Cue
Combination.- 8.5 Simulation Results.- 8.6 Summary.- 8.7 References.-
9.
Model Selection of Combined Neural Nets for Speech Recognition.- 9.1
Introduction.- 9.2 The Acoustic Mapping.- 9.3 Network Architectures.- 9.4
Experimental Environment.- 9.5 Bootstrap Estimates and Model Selection.- 9.6
Normalisation Results.- 9.7 Continuous Digit Recognition Over the Telephone
Network.- 9.8 Conclusions.- 9.9 References.-
10. Self-Organised Modular
Neural Networks for Encoding Data.- 10.1 Introduction.- 10.2 Basic
Theoretical Framework.- 10.3 Circular Manifold.- 10.4 Toroidal Manifold:
Factorial Encoding.- 10.5 Asymptotic Results.- 10.6 Approximate the Posterior
Probability.- 10.7 Joint Versus Factorial Encoding.- 10.8 Conclusions.- 10.9
References.-
11. Mixtures of X.- 11.1 Introduction.- 11.2 Mixtures of X.-
11.3 Summary.- 11.4 References.