Muutke küpsiste eelistusi

Communications Receivers: Principles and Design, Fourth Edition 4th edition [Kõva köide]

  • Formaat: Hardback, 704 pages, kõrgus x laius x paksus: 262x206x53 mm, kaal: 1631 g, 350 Illustrations
  • Ilmumisaeg: 21-Apr-2017
  • Kirjastus: McGraw-Hill Inc.,US
  • ISBN-10: 0071843337
  • ISBN-13: 9780071843331
  • Kõva köide
  • Hind: 115,29 €*
  • * saadame teile pakkumise kasutatud raamatule, mille hind võib erineda kodulehel olevast hinnast
  • See raamat on trükist otsas, kuid me saadame teile pakkumise kasutatud raamatule.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Lisa soovinimekirja
  • Formaat: Hardback, 704 pages, kõrgus x laius x paksus: 262x206x53 mm, kaal: 1631 g, 350 Illustrations
  • Ilmumisaeg: 21-Apr-2017
  • Kirjastus: McGraw-Hill Inc.,US
  • ISBN-10: 0071843337
  • ISBN-13: 9780071843331
Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product.







State-of-the-art communications receiver technologies and design strategies

This thoroughly updated guide offers comprehensive explanations of the science behind todays radio receivers along with practical guidance on designing, constructing, and maintaining real-world communications systems. You will explore system planning, antennas and antenna coupling, amplifiers and gain control,  filters, mixers, demodulation, digital communication, and the latest software defined radio (SDR) technology. Written by a team of telecommunication experts, Communications Receivers: Principles and Design, Fourth Edition, features technical illustrations, schematic diagrams, and detailed examples.

Coverage includes:

 Basic radio considerations  Radio receiver characteristics  Receiver system planning  Receiver implementation considerations  RF and baseband techniques for Software-Defined Radios  Transceiver SDR considerations  Antennas and antenna coupling  Mixers  Frequency sources and control  Ancillary receiver circuits  Performance measurement
Preface xiii
About the Authors xv
1 Basic Radio Considerations 1(88)
1.1 Introduction
1(2)
1.1.1 SDR, Defined
3(1)
1.2 Radio System Frontiers
3(5)
1.2.1 5G Fundamentals
4(4)
1.2.2 Looking Ahead
8(1)
1.3 Radio Communications Systems
8(9)
1.3.1 Radio Transmission and Noise
13(4)
1.4 Modulation
17(14)
1.4.1 Analog Modulation
17(6)
1.4.2 Modulation for Digital Signals
23(8)
1.5 Digital Signal Processing
31(27)
1.5.1 Analog-to-Digital (A/D) Conversion
32(7)
1.5.2 Digital-to-Analog (D/A) Conversion
39(2)
1.5.3 Converter Performance Criteria
41(2)
1.5.4 Processing Signal Sequences
43(5)
1.5.5 Digital Filters
48(5)
1.5.6 Nonlinear Processes
53(2)
1.5.7 Decimation and Interpolation
55(2)
1.5.8 DSP Hardware and Development Tools
57(1)
1.6 Radio Receiver Architectures
58(7)
1.6.1 Super-Regenerative Receivers
59(6)
1.7 Typical Radio Receivers
65(20)
1.7.1 Analog Receiver Design
65(2)
1.7.2 Mixed-Mode MFSK Communication System
67(3)
1.7.3 PLL CAD Simulation
70(3)
1.7.4 Software-Defined Radio Systems
73(11)
1.7.5 Design Example: EB 500 Monitoring Receiver
84(1)
1.8 References
85(1)
1.9 Bibliography
86(2)
1.10 Suggested Additional Reading
88(1)
2 Radio Receiver Characteristics 89(42)
2.1 Introduction
89(1)
2.2 The Radio Channel
89(10)
2.2.1 Channel Impulse Response
91(5)
2.2.2 Doppler Effect
96(1)
2.2.3 Transfer Function
96(1)
2.2.4 Time Response of Channel Impulse Response and Transfer Function
97(2)
2.3 Radio System Implementation
99(5)
2.3.1 Input Characteristics
99(1)
2.3.2 Gain, Sensitivity, and Noise Figure
99(5)
2.4 Selectivity
104(1)
2.5 Dynamic Range
105(5)
2.5.1 Desensitization
106(1)
2.5.2 AM Cross Modulation
107(1)
2.5.3 IM
107(3)
2.6 Reciprocal Mixing
110(6)
2.6.1 Phase Errors
113(1)
2.6.2 Error Vector Magnitude
114(2)
2.7 Spurious Outputs
116(1)
2.8 Gain Control
117(2)
2.9 BFO
119(1)
2.10 Output Characteristics
120(2)
2.10.1 Baseband Response and Noise
120(1)
2.10.2 Harmonic Distortion
121(1)
2.10.3 IM Distortion
121(1)
2.10.4 Transient Response
122(1)
2.11 Frequency Accuracy and Stability
122(2)
2.12 Frequency Settling Time
124(2)
2.13 Electromagnetic Interference
126(1)
2.14 Digital Receiver Characteristics
127(3)
2.14.1 BER Testing
127(2)
2.14.2 Transmission and Reception Quality
129(1)
2.15 References
130(1)
2.16 Bibliography
130(1)
2.17 Suggested Additional Reading
130(1)
3 Receiver System Planning 131(72)
3.1 The Receiver Level Plan
131(2)
3.2 Calculation of NF
133(2)
3.2.1 Noise Factor for Cascaded Circuits
134(1)
3.3 Noise Correlation in Linear Two Ports Using Correlation Matrices
135(7)
3.3.1 Noise Figure Test Equipment
139(1)
3.3.2 How to Determine the Noise Parameters
140(2)
3.4 Linearity
142(10)
3.4.1 Dynamic Range, Compression, and IMO
142(4)
3.4.2 Analysis
146(6)
3.5 Calculation of IP
152(6)
3.5.1 Example of NF and IP Calculation
157(1)
3.6 Spurious Response Locations
158(7)
3.6.1 D-H Traces
161(4)
3.7 Selectivity
165(2)
3.7.1 Single-Tuned Circuit
165(2)
3.7.2 Coupled Resonant Pairs
167(1)
3.8 Complex Filter Characteristics
167(10)
3.8.1 Butterworth Selectivity
169(3)
3.8.2 Chebyshev Selectivity
172(1)
3.8.3 Thompson or Bessel Selectivity
172(1)
3.8.4 Equiripple Linear Phase
173(1)
3.8.5 Transitional Filters
173(1)
3.8.6 Elliptic Filters
173(3)
3.8.7 Special Designs and Phase Equalization
176(1)
3.9 Filter Design Implementation
177(4)
3.9.1 LC Filters
177(1)
3.9.2 Electrical Resonators
178(2)
3.9.3 Electromechanical Filters
180(1)
3.9.4 Quartz Crystal Resonators
180(1)
3.9.5 Monolithic Crystal Filters
181(1)
3.9.6 Ceramic Filters
181(1)
3.10 Time-Sampled Filters
181(7)
3.10.1 Discrete Fourier and z Transforms
182(1)
3.10.2 Discrete-Time-Sampled Filters
183(2)
3.10.3 Analog-Sampled Filter Implementations
185(3)
3.11 Digital Processing Filters
188(3)
3.12 Frequency Tracking
191(4)
3.13 IF and Image Frequency Rejection
195(1)
3.14 Electronically Tuned Filter
196(5)
3.14.1 Diode Performance
197(3)
3.14.2 A VHF Example
200(1)
3.15 References
201(1)
3.16 Suggested Additional Reading
202(1)
4 Receiver Implementation Considerations 203(48)
4.1 Introduction
203(1)
4.2 Digital Implementation of Receiver Functions
203(16)
4.2.1 Digital Receiver Design Techniques
208(1)
4.2.2 Noise Calculations
209(7)
4.2.3 Noise Cancellation
216(2)
4.2.4 Spectral Subtraction
218(1)
4.3 Spread Spectrum
219(12)
4.3.1 Basic Principles
220(5)
4.3.2 Frequency Hopping
225(2)
4.3.3 Direct Sequence
227(4)
4.3.4 Performance
231(1)
4.4 Simulation of System Performance
231(17)
4.4.1 Spectrum Occupancy
232(1)
4.4.2 Network Response
233(4)
4.4.3 Medium Prediction
237(1)
4.4.4 System Simulation
238(1)
4.4.5 HF Medium Simulation
238(4)
4.4.6 Simple Simulations
242(5)
4.4.7 Applications of Simulation
247(1)
4.5 References
248(1)
4.6 Bibliography
249(1)
4.7 Suggested Additional Reading
249(2)
5 Software-Defined Radio Principles and Technologies 251(54)
5.1 Introduction
251(3)
5.1.1 General Concept of a Software-Defined Radio
252(1)
5.1.2 Components (Analog Elements, DSP, and FPGA)
252(1)
5.1.3 About the DSP
253(1)
5.2 RF Front-End Architectures
254(10)
5.2.1 Heterodyne Receiver
254(2)
5.2.2 Direct-Conversion Receiver
256(1)
5.2.3 Digital IF Receiver Design
257(1)
5.2.4 Direct-Sampling Receiver
258(2)
5.2.5 Broadband Receiver Design
260(2)
5.2.6 Multicarrier Receiver Design
262(2)
5.3 RF Front-End Design Considerations
264(12)
5.3.1 Receiver Link Budget
264(1)
5.3.2 Analog-to-Digital Conversion
265(6)
5.3.3 Dynamic Range
271(1)
5.3.4 Image Rejection
272(2)
5.3.5 RF Preselection
274(2)
5.4 Digital Front-End Implementation
276(16)
5.4.1 Digital Down Conversion
276(1)
5.4.2 Numerically Controlled Oscillator
277(2)
5.4.3 Decimation and Channel Filtering
279(10)
5.4.4 Automatic Gain Control
289(1)
5.4.5 IQ Mismatch Cancellation
289(3)
5.5 Baseband Processing
292(6)
5.5.1 Demodulation (AM/PM)
292(1)
5.5.2 Synchronization-Frequency Offset and Sampling Frequency Offset Correction
293(2)
5.5.3 Automatic Gain Control for Audio Processing
295(2)
5.5.4 Noise Blanker
297(1)
5.5.5 The S-Meter
298(1)
5.6 SDR Realization Example
298(4)
5.7 References
302(1)
5.8 Bibliography
302(1)
5.9 Literature
303(1)
5.10 Suggested Additional Reading
303(2)
6 Transceiver SDR Considerations 305(20)
6.1 Introduction
305(1)
6.2 Architecture
305(13)
6.2.1 I/Q Modulator
305(4)
6.2.2 Adaptive Transmitter Predistortion
309(7)
6.2.3 Power Enhancement Technique
316(2)
6.3 Transceiver Device Implementation Examples
318(5)
6.3.1 AD9364 RF Transceiver
318(4)
6.3.2 Transceiver System Implementations
322(1)
6.4 References
323(1)
6.5 Suggested Additional Reading
323(2)
7 Antennas and Antenna Systems 325(56)
7.1 Introduction
325(6)
7.1.1 Basic Principles
325(6)
7.2 Antenna Coupling Network
331(2)
7.3 Coupling Antennas to Tuned Circuits
333(2)
7.4 Small Antennas
335(8)
7.4.1 Whip Antennas
335(2)
7.4.2 Loop Antennas
337(6)
7.5 Multielement Antennas
343(3)
7.5.1 Log-Periodic Antenna
343(1)
7.5.2 Yagi-Uda Antenna
344(1)
7.5.3 Reflector Antenna
344(1)
7.5.4 Array Antenna
345(1)
7.5.5 Phased Array Antenna Systems
345(1)
7.6 Active Antennas
346(9)
7.6.1 Application Considerations
347(8)
7.7 Diversity Reception
355(7)
7.8 Adaptive Receiver Processing
362(16)
7.8.1 Adaptive Antenna Processing
363(5)
7.8.2 Adaptive Equalization
368(4)
7.8.3 Time-Gated Equalizer
372(2)
7.8.4 Link-Quality Analysis
374(3)
7.8.5 Automatic Link Establishment
377(1)
7.9 References
378(1)
7.10 Bibliography
379(1)
7.11 Suggested Additional Reading
379(2)
8 Mixers 381(38)
8.1 Introduction
381(3)
8.1.1 Key Terms
382(2)
8.2 Passive Mixers
384(9)
8.3 Active Mixers
393(3)
8.4 Switching Mixers
396(2)
8.5 IC-Based Mixers
398(9)
8.5.1 Gilbert Cell Mixer
399(3)
8.5.2 Gilbert Cell Performance Analysis
402(5)
8.6 Wide Dynamic Range Converters
407(3)
8.6.1 Process Gain
410(1)
8.7 Mixer Design Considerations
410(5)
8.7.1 Mixer Device Implementation Example
412(3)
8.8 References
415(1)
8.9 Suggested Additional Reading
416(1)
8.10 Product Resources
417(2)
9 Frequency Sources and Control 419(110)
9.1 Introduction
419(2)
9.1.1 Key Terms
420(1)
9.2 Phase-Locked Loop Synthesizers
421(47)
9.2.1 The Type 2, Second-Order Loop
422(5)
9.2.2 Transient Behavior of Digital Loops Using Tri-State Phase Detectors
427(11)
9.2.3 Practical PLL Circuits
438(1)
9.2.4 Fractional-Division Synthesizers
438(6)
9.2.5 Spur-Suppression Techniques
444(4)
9.2.6 Noise in Synthesizers
448(5)
9.2.7 Practical Discrete Component Examples
453(15)
9.3 Noise and Performance Analysis of PLL Systems
468(3)
9.3.1 Design Process
469(2)
9.4 Multiloop Synthesizers
471(3)
9.5 Direct Digital Synthesis
474(3)
9.6 Monolithic PLL Systems
477(4)
9.7 Digital Waveform Synthesizers
481(14)
9.7.1 Systems Considerations
482(5)
9.7.2 Modulation with the Phase Accumulator Synthesizer
487(1)
9.7.3 RAM-Based Synthesis
488(3)
9.7.4 Applications
491(1)
9.7.5 Summary of Methods
491(1)
9.7.6 Signal Quality
492(3)
9.8 The Colpitts Oscillator
495(26)
9.8.1 Linear Approach
495(3)
9.8.2 Linear S-Parameters Approach
498(2)
9.8.3 Time-Domain-Based Analysis of Transistor Nonlinearities
500(3)
9.8.4 Selecting the Right Transistor
503(1)
9.8.5 Design Example for a 350-MHz Fixed Frequency Colpitts Oscillator
503(18)
9.8.6 Summary
521(1)
9.9 Frequency Source Device Implementation Examples
521(4)
9.9.1 AD9102 Waveform Generator
521(1)
9.9.2 ADF4355 Wideband Synthesizer
522(3)
9.10 References
525(1)
9.11 Suggested Additional Reading
526(2)
9.12 Product Resources
528(1)
10 Ancillary Receiver Circuits 529(84)
10.1 Introduction
529(1)
10.2 Amplifiers and Gain Control
529(32)
10.2.1 Amplifying Devices and Circuits
530(3)
10.2.2 Wide-Band Amplifiers
533(4)
10.2.3 Amplifiers with Feedback
537(8)
10.2.4 Gain Control of Amplifiers
545(16)
10.3 Demodulation and Demodulators
561(31)
10.3.1 Analog Demodulation
561(20)
10.3.2 Digital Data Demodulation
581(11)
10.4 Noise Limiting and Blanking
592(6)
10.4.1 Balancers
595(2)
10.4.2 Noise Limiters
597(1)
10.4.3 Impulse Noise Blankers
597(1)
10.5 Squelch Circuits
598(5)
10.6 AFC
603(1)
10.7 Modern Component Implementation Examples
604(7)
10.7.1 RF/IF Gain Block
604(3)
10.7.2 DSP Example Device
607(2)
10.7.3 Demodulator Functional Block
609(2)
10.8 References
611(1)
10.9 Suggested Additional Reading
612(1)
11 Performance Measurement 613(50)
11.1 Introduction
613(1)
11.2 Signal Generators
613(4)
11.2.1 Analog Signal Generators
613(1)
11.2.2 Vector Signal Generators
614(3)
11.3 Receiver Measurements
617(21)
11.3.1 Single-Tone Measurements
617(7)
11.3.2 Two-Tone Measurements
624(5)
11.3.3 Noise Figure
629(1)
11.3.4 Total Dynamic Range
630(3)
11.3.5 Measurement of Mixer Performance
633(5)
11.4 Spectrum Analysis
638(14)
11.4.1 FFT Analyzer
638(2)
11.4.2 Heterodyne Analyzer
640(1)
11.4.3 Filters
641(2)
11.4.4 Hybrid Implementation
643(1)
11.4.5 Comparison of Instrument Architectures
644(5)
11.4.6 Intermodulation Distortion Measurement
649(3)
11.5 Noise Power Ratio
652(4)
11.5.1 Derivation of NPR
654(1)
11.5.2 Notch (Bandstop) Filter Design Considerations
654(1)
11.5.3 Determination of Optimum Noise Loading
654(1)
11.5.4 Measurement Observations
655(1)
11.6 Testing SDR Systems
656(4)
11.6.1 Measurement Considerations
657(3)
11.7 SDR versus Legacy Radio
660(1)
11.8 References
661(1)
11.9 Bibliography
661(2)
A Example Receiver Implementation 663(14)
Index 677
Ulrich L. Rohde is the President of Communications Consulting Corporation, Executive Vice President of Ansoft Corporation, Chairman of Synergy Microwave Corporation, and a partner in Rohde & Schwarz, Munich. He is Honorary Visiting Professor of Electronic and Microwave Engineering at the University of Bradford, UK and is the author of six books. He resides in Upper Saddle River, New Jersey.





Jerry Whitaker is Vice President of Standards Development at the Advanced Television Systems Committee (ATSC), Washington, D.C. He was previously President of Technical Press, a consulting company based in the San Jose area. Whitaker has been involved in various aspects of the electronics industry for over 30 years, with specialization in communications. He has lectured extensively on the topic of electronic systems design, installation, and maintenance. He is the former editorial director and associate publisher of Broadcast Engineering and Video Systems magazines, and a former radio station chief engineer and television news producer. Mr. Whitaker is a Fellow of the Society of Broadcast Engineers and an SBE-certified professional broadcast engineer. He is also a fellow of the Society of Motion Picture and Television Engineers, and a member of the Institute of Electrical and Electronics Engineers.