Muutke küpsiste eelistusi

Compact and Fast Machine Learning Accelerator for IoT Devices 2019 ed. [Kõva köide]

  • Formaat: Hardback, 149 pages, kõrgus x laius: 235x155 mm, kaal: 454 g, 61 Illustrations, color; 15 Illustrations, black and white; IX, 149 p. 76 illus., 61 illus. in color., 1 Hardback
  • Sari: Computer Architecture and Design Methodologies
  • Ilmumisaeg: 18-Dec-2018
  • Kirjastus: Springer Verlag, Singapore
  • ISBN-10: 981133322X
  • ISBN-13: 9789811333224
  • Kõva köide
  • Hind: 122,82 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 144,49 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 149 pages, kõrgus x laius: 235x155 mm, kaal: 454 g, 61 Illustrations, color; 15 Illustrations, black and white; IX, 149 p. 76 illus., 61 illus. in color., 1 Hardback
  • Sari: Computer Architecture and Design Methodologies
  • Ilmumisaeg: 18-Dec-2018
  • Kirjastus: Springer Verlag, Singapore
  • ISBN-10: 981133322X
  • ISBN-13: 9789811333224

This book presents the latest techniques for machine learning based data analytics on IoT edge devices. A comprehensive literature review on neural network compression and machine learning accelerator is presented from both algorithm level optimization and hardware architecture optimization. Coverage focuses on shallow and deep neural network with real applications on smart buildings. The authors also discuss hardware architecture design with coverage focusing on both CMOS based computing systems and the new emerging Resistive Random-Access Memory (RRAM) based systems. Detailed case studies such as indoor positioning, energy management and intrusion detection are also presented for smart buildings.

Computing on Edge Devices in Internet-of-things (IoT).- The Rise of Machine Learning in IoT system.- Least-squares-solver for Shadow Neural Network.- Tensor-solver for Deep Neural Network.- Distributed-solver for Networked Neural Network.- Conclusion.