Muutke küpsiste eelistusi

Complex Analysis and Geometry [Kõva köide]

, (University of Trento, Trento, Italy), , (University of Trento, Firenze, Italy)
  • Kõva köide
  • Hind: 212,50 €*
  • * saadame teile pakkumise kasutatud raamatule, mille hind võib erineda kodulehel olevast hinnast
  • See raamat on trükist otsas, kuid me saadame teile pakkumise kasutatud raamatule.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Lisa soovinimekirja
Based on two conferences held in Trento, Italy, this volume contains 13 research papers and two survey papers on complex analysis and complex algebraic geometry. The main topics addressed by these leading researchers include:

  • Mori theory
  • polynomial hull vector bundles
  • q-convexity Lie groups and actions on complex spaces
  • hypercomplex structures
  • pseudoconvex domains
  • projective varieties

    Peer-reviewed and extensively referenced, Complex Analysis and Geometry contains recent advances and important research results. It also details several problems that remain open, the resolution of which could further advance the field.
  • Preface Contributors On the limits of manifolds with nef canonical bundles 1(6) M. Andreatta T. Peternell On the stability of the restriction of TP(n) to projective curves 7(12) E. Ballico B. Russo Theorie des (a, b)-modules II. Extensions 19(41) D. Barlet Moduli of reflexive K3 surfaces 60(9) C. Bartocci U. Bruzzo D. Hernandez Ruiperez New examples of domains with non-injective proper holomorphic self-maps 69(14) F. Berteloot J. J. Loeb Q-Convexity. A survey 83(11) M. Coltoiu Commuting maps and families of hyperbolic automorphisms 94(18) C. de Fabritiis An alternative proof of a theorem of Boas-Straube-Yu 112(7) K. Diederich G. Herbort Large polynomial hulls with no analytic structure 119(4) J. Duval N. Levenberg Canonical connections for almost-hypercomplex structures 123(14) P. Gauduchon The tangent bundle of P(2) restricted to plane curves 137(4) G. Hein Quotients with respects to holomorphic actions of reductive groups 141(12) P. Heinzner L. Migliorini Adjunction theory on terminal varieties 153(12) M. Mella Runge theorem in higher dimensions 165(17) V. Vajaitu Only countably many simply-connected Lie groups admit lattices 182 J. Winkelmann