Muutke küpsiste eelistusi

Complex Analysis on Infinite Dimensional Spaces [Kõva köide]

  • Formaat: Hardback, 558 pages, kõrgus: 240 mm, bibliography, index
  • Sari: Springer Monographs in Mathematics
  • Ilmumisaeg: 11-Jun-1999
  • Kirjastus: Springer London Ltd
  • ISBN-10: 1852331585
  • ISBN-13: 9781852331580
Teised raamatud teemal:
  • Kõva köide
  • Hind: 76,45 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 89,95 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 558 pages, kõrgus: 240 mm, bibliography, index
  • Sari: Springer Monographs in Mathematics
  • Ilmumisaeg: 11-Jun-1999
  • Kirjastus: Springer London Ltd
  • ISBN-10: 1852331585
  • ISBN-13: 9781852331580
Teised raamatud teemal:
This book considers basic questions connected with, and arising from, the locally convex space structures that may be placed on the space of holomorphic functions over a locally convex space. The first three chapters introduce the basic properties of polynomials and holomorphic functions over locally convex spaces. These are followed by two chapters concentrating on relationships between the compact open topology, the ported or Nachbin topology and the topology generated by the countable open covers. The concluding chapter examines the interplay between the various concepts introduced earlier as being intrinsic to infinite dimensional holomorphy. The comprehensive notes, historical background, exercises, appendix and bibliography make this book an invaluable reference whilst the presentation and synthesis of ideas from different areas will appeal to mathematicians from many different backgrounds.
Chapter
1. Polynomials
2(82)
1.1 Continuous Polynomials
2(19)
1.2 Topologies on Spaces of Polynomials
21(20)
1.3 Geometry of Spaces of Polynomials
41(25)
1.4 Exercises
66(7)
1.5 Notes
73(11)
Chapter
2. Duality Theory for Polynomials
84(60)
2.1 Special Spaces of Polynomials and the Approximation Property
84(10)
2.2 Nuclear Spaces
94(10)
2.3 Integral Polynomials and the Radon-Nikodym Property
104(8)
2.4 Reflexivity and Related Concepts
112(17)
2.5 Exercises
129(5)
2.6 Notes
134(10)
Chapter
3. Holomorphic Mappings between Locally Convex Spaces
144(101)
3.1 Holomorphic Functions
144(22)
3.2 Topologies on Spaces of Holomorphic Mappings
166(21)
3.3 The Quasi-Local Theory of Holomorphic Functions
187(23)
3.4 Polynomials in the Quasi-Local Theory
210(9)
3.5 Exercises
219(10)
3.6 Notes
229(16)
Chapter
4. Decompositions of Holomorphic Functions
245(79)
4.1 Decompositions of Spaces of Holomorphic Functions
245(11)
4.2 T(w) = T(Delta) for Frechet Spaces
256(19)
4.3 T(b) = T(w) for Frechet Spaces
275(12)
4.4 Examples and Counterexamples
287(22)
4.5 Exercises
309(4)
4.6 Notes
313(11)
Chapter
5. Riemann Domains
324(74)
5.1 Holomorphic Germs on a Frechet Space
324(9)
5.2 Riemann Domains over Locally Convex Spaces
333(51)
5.3 Exercises
384(5)
5.4 Notes
389(9)
Chapter
6. Holomorphic Extensions
398(49)
6.1 Extensions from Dense Subspaces
398(13)
6.2 Extensions from Closed Subspaces
411(13)
6.3 Holomorphic Functions of Bounded Type
424(14)
6.4 Exercises
438(4)
6.5 Notes
442(5)
Appendix. Remarks on Selected Exercises 447(38)
References 485(48)
Index 533