Muutke küpsiste eelistusi

Composite Materials: Mechanics, Manufacturing and Modeling [Kõva köide]

(Dr. B. R. Ambedkar National Institute of Technology (NIT) Jalandhar, Punjab, INDIA)
  • Formaat: Hardback, 536 pages, kõrgus x laius: 234x156 mm, kaal: 800 g, 21 Tables, black and white; 232 Illustrations, black and white
  • Ilmumisaeg: 29-Mar-2021
  • Kirjastus: CRC Press
  • ISBN-10: 0367687550
  • ISBN-13: 9780367687557
Teised raamatud teemal:
  • Formaat: Hardback, 536 pages, kõrgus x laius: 234x156 mm, kaal: 800 g, 21 Tables, black and white; 232 Illustrations, black and white
  • Ilmumisaeg: 29-Mar-2021
  • Kirjastus: CRC Press
  • ISBN-10: 0367687550
  • ISBN-13: 9780367687557
Teised raamatud teemal:
Composite materials find diverse applications in areas including aerospace, automotive, architecture, energy, marine and military. This comprehensive textbook discusses three important aspects including manufacturing, mechanics and dynamic mechanical analysis of composites.

The textbook comprehensively presents fundamental concepts of composites, manufacturing techniques and advanced topics including as advances in composite materials in various fields, viscoelastic behavior of composites, toughness of composites and Nano mechanics of composites in a single volume. Topics such as polymer matrix composites, metal matrix composites, ceramic matrix composites, micromechanical behavior of a lamina, micromechanics and nanomechanics are discussed in detail.

Aimed at senior undergraduate and graduate students for a course on composite materials in the fields of mechanical engineering, automobile engineering and electronics engineering, this book:











Discusses mechanics and manufacturing techniques of composite materials in a single volume.





Explains viscoelastic behavior of composites in a comprehensive manner.





Covers fatigue, creep and effect of thermal stresses on composites.





Discusses concepts including bending, buckling and vibration of laminated plates in detail.





Explains dynamic mechanical analysis (DMA) of composites.
Preface xvii
Author xxi
Chapter 1 Introduction
1(30)
1.1 What Is a Composite?
2(1)
1.2 Why Composites?
3(2)
1.3 History of Composites
5(2)
1.4 Classification of Composites
7(7)
1.4.1 Fiber-Reinforced Composites
7(1)
1.4.2 Laminated Composites
8(1)
1.4.2.1 Bimetals
8(1)
1.4.2.2 Clad Metals
9(1)
1.4.2.3 Laminated Glass
10(1)
1.4.2.4 Plastic-Based Laminates
11(1)
1.4.3 Particulate Composites
12(1)
1.4.3.1 Nonmetallic Particles in Nonmetallic Matrix
12(1)
1.4.3.2 Metallic Particles in Nonmetallic Matrix
13(1)
1.4.3.3 Metallic Particles in Metallic Matrix
13(1)
1.4.3.4 Nonmetallic Particles in Metallic Matrix
13(1)
1.4.4 Combination of Composites
14(1)
1.5 Nanomaterials
14(6)
1.6 Applications of Composite Materials
20(9)
1.6.1 Aerospace Applications
20(2)
1.6.2 Missile Applications
22(1)
1.6.3 Launch Vehicle Applications
22(1)
1.6.4 Railways
22(2)
1.6.5 Sports Equipment
24(1)
1.6.6 Automotives
25(1)
1.6.7 Infrastructure
26(1)
1.6.8 Medical Applications
27(1)
1.6.9 Renewables
28(1)
References
29(2)
Chapter 2 Materials
31(54)
2.1 Fibers
31(3)
2.2 Types of Fibers
34(1)
2.3 Natural Fibers
35(18)
2.3.1 Silk Fiber
35(1)
2.3.2 Wool Fiber
36(1)
2.3.3 Spider Silk
37(1)
2.3.4 Sinew Fiber
38(1)
2.3.5 Camel Hair
38(1)
2.3.6 Cotton Fiber
38(2)
2.3.7 Jute Fiber
40(2)
2.3.8 Kenaf Fiber
42(1)
2.3.9 Hemp Fiber
43(1)
2.3.10 Flax Fiber
44(1)
2.3.11 Ramie Fiber
45(1)
2.3.12 Sisal Fiber
46(1)
2.3.13 Bamboo Fiber
46(1)
2.3.14 Maize (Corn) Fiber
47(1)
2.3.15 Coir Fiber
48(1)
2.3.16 Banana Fiber
48(1)
2.3.17 Kapok Fiber
49(1)
2.3.18 Abaca Fiber
49(1)
2.3.19 Raffia Palm Fiber
50(1)
2.3.20 Sugarcane Fiber
50(1)
2.3.21 Asbestos Fiber
51(1)
2.3.22 Glass Wool
52(1)
2.3.23 Rock Wool
52(1)
2.3.24 Ceramic Wool
52(1)
2.4 Advanced Fibers
53(9)
2.4.1 Boron Fiber
53(1)
2.4.2 Carbon Fiber
54(1)
2.4.2.1 Fabrication of C Fiber Using PAN
54(3)
2.4.2.2 Fabrication of C Fiber Using Pitch
57(1)
2.4.3 Glass Fiber
58(2)
2.4.4 Aramid (Kevlar) Fiber
60(2)
2.5 Woven Fabric
62(1)
2.6 Matrices
63(8)
2.6.1 Polymer Matrix Composite
65(2)
2.6.2 Metal Matrix Composites
67(2)
2.6.3 Ceramic Matrix Composites
69(1)
2.6.4 Carbon-Carbon Composites
69(2)
2.7 Fiber Surface Treatment
71(7)
2.7.1 Graphite Fiber Treatment
72(3)
2.7.2 Glass Fiber Treatment
75(3)
2.7.3 Polymer Fiber Treatment
78(1)
2.8 Fiber Content, Density, and Void Content
78(2)
2.9 Load Transfer Mechanism
80(3)
Reference
83(2)
Chapter 3 Manufacturing Techniques
85(56)
3.1 Polymer Matrix Composites
85(14)
3.1.1 Thermoset Matrix Composites
86(1)
3.1.1.1 Hand LayUp and Spray Techniques
86(2)
3.1.1.2 Filament Winding
88(1)
3.1.1.3 Autoclave Curing
89(1)
3.1.1.4 Vacuum Bagging Process
90(3)
3.1.1.5 Pultrusion
93(1)
3.1.1.6 Resin Transfer Molding (RTM)
94(3)
3.1.2 Thermoplastic Matrix Composites
97(1)
3.1.2.1 Film Stacking
97(1)
3.1.2.2 Diaphragm Forming
97(1)
3.1.2.3 Thermoplastic Tape Laying
98(1)
3.1.2.4 Sheet Molding Compound
99(1)
3.2 Metal Matrix Composites
99(11)
3.2.1 Liquid-State Processes
99(1)
3.2.1.1 Casting or Liquid Infiltration
100(1)
3.2.1.2 Squeeze Casting
101(2)
3.2.1.3 Centrifugal Casting
103(1)
3.2.1.4 Spray Forming
104(1)
3.2.2 Solid-State Processes
104(1)
3.2.2.1 Diffusion Bonding
104(1)
3.2.2.2 Deformation Processing
105(1)
3.2.2.3 Powder Processing
106(1)
3.2.2.4 Sinter Forging
107(1)
3.2.2.5 Deposition Techniques
108(1)
3.2.3 In Situ Processes
109(1)
3.3 Ceramic Matrix Composites
110(7)
3.3.1 Cold Pressing and Sintering
110(1)
3.3.2 Hot Pressing
110(1)
3.3.3 Reaction Bonding
111(1)
3.3.4 Infiltration
112(1)
3.3.4.1 Liquid Infiltration
112(1)
3.3.4.2 Gaseous Infiltration
113(2)
3.3.5 Polymer Infiltration and Pyrolysis
115(2)
3.4 Miscellaneous Techniques
117(3)
3.4.1 Resin Film Infusion
117(1)
3.4.2 Elastic Reservoir Molding
117(1)
3.4.3 Tube Rolling
118(1)
3.4.4 Compocasting
119(1)
3.4.5 Spark Plasma Sintering
119(1)
3.46 Vortex Addition Technique
120(5)
3.4.7 Pressureless Infiltration Process
121(1)
3.4.8 Ultrasonic Infiltration
122(2)
3.4.9 Chemical Vapor Deposition
124(1)
3.4.10 Physical Vapor Deposition
125(1)
3.4.10.1 Conventional Sputtering
125(1)
3.4.10.2 Ion Beam Sputtering
125(1)
3.5 Basics of Curing
125(13)
3.5.1 Degree of Curing
126(1)
3.5.2 Curing Cycle
127(2)
3.5.3 Viscosity
129(3)
3.5.4 Resin Flow
132(1)
3.5.5 Consolidation
133(1)
3.5.6 Gel-Time Test
134(1)
3.5.7 Shrinkage
135(1)
3.5.8 Voids
136(2)
References
138(3)
Chapter 4 Mechanics of Composites
141(32)
4.1 Laminae
144(2)
4.2 Laminates
146(1)
4.3 Tensors
147(3)
4.4 Deformation
150(1)
4.5 Strain
151(2)
4.6 Stress
153(1)
4.7 Equilibrium
154(1)
4.8 Boundary Conditions
154(2)
4.8.1 Tractions
154(1)
4.8.2 Free Surface Boundary Conditions
155(1)
4.9 Continuity Conditions
156(1)
4.9.1 Displacement Continuity
156(1)
4.9.2 Traction Continuity
156(1)
4.10 Compatibility
157(1)
4.11 Constitutive Equations
158(1)
4.12 Plane Stress
159(1)
4.13 Plane Strain
160(1)
4.14 Generalized Plane Problems
161(1)
4.15 Strain Energy Density
161(1)
4.16 Minimum Principles
161(4)
4.16.1 Minimum Potential Energy
162(2)
4.16.2 Minimum Complementary Energy
164(1)
4.16.3 Bounds and Uniqueness
164(1)
4.17 Effective Property Concept
165(1)
4.18 Generalized Hooke's Law
165(2)
4.19 Material Symmetry
167(5)
4.19.1 Monoclinic Material
167(2)
4.19.2 Orthotopic Material
169(2)
4.19.3 Transversely Isotropic Material
171(1)
4.19.4 Isotropic Material
172(1)
References
172(1)
Chapter 5 Linear Elastic Stress-Strain Characteristics of Fiber-Reinforced Composites
173(42)
5.1 Stresses and Deformation
174(10)
5.2 Maxwell--Betti Reciprocal Theorem
184(2)
5.3 Material Properties Relationship
186(7)
5.4 Typical Properties of Materials
193(2)
5.5 Interpretation of Stress-Strain Relations
195(7)
5.6 Free Thermal Strains
202(4)
5.7 Effect of Free Thermal Strains on Stress-Strain Relations
206(5)
5.8 Effect of Free Moisture Strains on Stress-Strain Relations
211(3)
References
214(1)
Chapter 6 Micromechanics
215(32)
6.1 Volume and Mass Fractions
215(2)
6.1.1 Volume Fractions
215(1)
6.1.2 Mass Fractions
216(1)
6.2 Density
217(1)
6.3 Void Content
218(1)
6.4 Evaluation of Elastic Moduli
219(26)
6.4.1 Strength-of-Materials Approach
219(1)
6.4.1.1 Model for E1 and v12
219(4)
6.4.1.2 Model for E2
223(6)
6.4.1.3 Model for G12
229(2)
6.4.2 Semi-Empirical Models
231(1)
6.4.2.1 Longitudinal Young's Modulus
231(1)
6.4.2.2 Transverse Young's Modulus
232(1)
6.4.2.3 In-plane Shear Modulus
232(1)
6.4.3 Elasticity Approach
233(1)
6.4.3.1 Tension in Fiber Direction
234(6)
6.4.3.2 Axial Shear
240(5)
References
245(2)
Chapter 7 Plane Stress Assumption
247(14)
7.1 Stresses and Strains under Plane Stress Condition
250(5)
7.2 Numerical Results
255(1)
7.3 Effects of Free Thermal and Free Moisture Strains
256(2)
References
258(3)
Chapter 8 Global Coordinate System: Plane Stress Stress--Strain Relations
261(46)
8.1 Transformation Equations
262(5)
8.2 Transformed Reduced Compliance
267(14)
8.3 Transformed Reduced Stiffnesses
281(9)
8.4 Engineering Properties in Global Coordinates
290(3)
8.5 Mutual Influence Coefficients
293(2)
8.6 Free Thermal and Moisture Strains
295(3)
8.7 Effects of Free Thermal and Moisture Strains on Plane Stress Stress--Strain Relations in Global Coordinate System
298(7)
References
305(2)
Chapter 9 Classical Lamination Theory
307(44)
9.1 Laminate Nomenclature
308(3)
9.2 The Kirchhoff Hypothesis
311(4)
9.3 Effects of the Kirchhoff Hypothesis
315(3)
9.4 Laminate Strains
318(3)
9.5 Laminate Stresses
321(1)
9.6 Stress Distributions
322(17)
9.6.1 [ 0/90]s Laminate Subjected to Known ε0x
322(8)
9.6.2 [ 0/90]s Laminate Subjected to Known k0x
330(9)
9.7 Force and Moment Resultants
339(9)
References
348(3)
Chapter 10 The ABD Matrix
351(16)
10.1 Force and Moment Resultants
351(3)
10.2 The ABD Matrix
354(9)
10.3 Classification of Laminates
363(3)
10.3.1 Symmetric Laminates
363(1)
10.3.2 Balanced Laminates
364(1)
10.3.3 Symmetric Balanced Laminates
364(1)
10.3.4 Cross-Ply Laminates
365(1)
10.3.5 Symmetric Cross-Ply Laminates
365(1)
References
366(1)
Chapter 11 Failure Theories for Composite Materials
367(12)
11.1 Theories of Failure
368(1)
11.2 Hill's Theory of Failure
368(2)
11.3 Tsai-Hill Theory of Failure
370(1)
11.4 Hoffman Theory of Failure
371(1)
11.5 Maximum Stress Failure Theory
372(1)
11.6 Maximum Strain Theory
373(1)
11.7 The Tsai--Wu Failure Criterion
373(3)
11.8 Hashin Theory
376(1)
References
377(2)
Chapter 12 Mechanics of Short-Fiber-Reinforced Composites
379(42)
12.1 Notation
380(1)
12.2 Average Properties
381(2)
12.3 Theoretical Models
383(26)
12.3.1 Cox Shear-Lag Model
383(6)
12.3.2 Eshelby's Equivalent Inclusion
389(2)
12.3.3 Dilute Eshelby's Model
391(1)
12.3.4 Mori-Tanaka Model
392(5)
12.3.5 Chow Model
397(1)
12.3.6 Modified Halpin--Tsai or Finegan Model
398(7)
12.3.7 Hashin--Shtrikman Model
405(2)
12.3.8 Lielens Model
407(1)
12.3.9 Self-Consistent Model
407(2)
12.4 Fast Fourier Transform Numerical Homogenization Methods
409(7)
12.4.1 FFT-Based Homogenization Method
411(3)
12.4.2 Implementation of FFT-Based Homogenization Method
414(2)
References
416(5)
Chapter 13 Toughness of Composite Materials
421(16)
13.1 Basics
421(3)
13.2 Interfacial Fracture
424(3)
13.3 Work of Fracture
427(5)
13.3.1 Deformation of Matrix
427(1)
13.3.2 Fiber Fracture
428(1)
13.3.3 Interfacial Debonding
428(2)
13.3.4 Frictional Sliding and Fiber Pullout
430(2)
13.3.5 Effect of Microstructure
432(1)
13.4 Subcritical Crack Growth
432(4)
13.4.1 Fatigue
432(3)
13.4.2 Stress Corrosion Cracking
435(1)
References
436(1)
Chapter 14 Interlaminar Stresses
437(10)
14.1 Finite-Width Coupon
438(1)
14.2 Equilibrium Considerations
439(1)
14.3 Interlaminar Fyz Shear Force
439(3)
14.3.1 Uniform Strain Loading
441(1)
14.3.2 Curvature Loading
442(1)
14.4 Interlaminar Mz Moment
442(2)
14.4.1 Uniform Strain Loading
443(1)
14.4.2 Curvature Loading
443(1)
14.5 Interlaminar Fa Shear Force
444(1)
14.5.1 Uniform Strain Loading
444(1)
14.5.2 Curvature Loading
445(1)
References
445(2)
Chapter 15 Laminated Plates
447(28)
15.1 Governing Equations
447(13)
15.2 Governing Equations (In Displacement Form)
460(5)
15.3 Simplification of Governing Equations
465(9)
15.3.1 Symmetric Laminates
466(3)
15.3.2 Symmetric Balanced Laminates
469(2)
15.3.3 Symmetric Cross-Ply Laminates
471(3)
References
474(1)
Chapter 16 Viscoelastic and Dynamic Behavior of Composites
475(36)
16.1 Viscoelastic Behavior of Composites
477(22)
16.1.1 Boltzmann Superposition Integral
478(3)
16.1.2 Spring-Dashpot Models
481(10)
16.1.3 Quasi-Elastic Approach
491(3)
16.1.4 Complex Modulus
494(3)
16.1.5 Elastic-Viscoelastic Correspondence Principle
497(2)
16.2 Dynamic Behavior
499(11)
16.2.1 Longitudinal Wave Propagation
500(3)
16.2.2 Flexural Vibration
503(5)
16.2.3 Damping Analysis
508(2)
References
510(1)
Chapter 17 Mechanical Testing of Composites
511(22)
17.1 Societies for Testing Standards
511(1)
17.2 Objectives of Mechanical Testing
512(1)
17.3 Effect of Anisotropy
513(1)
17.4 Nature and Quality of Data
514(1)
17.5 Samples and Specimen for Testing
515(1)
17.6 Miscellaneous Issues with Testing
516(1)
17.7 Primary Properties
516(3)
17.7.1 Microscopy
518(1)
17.7.2 Ultrasonic Inspection
518(1)
17.7.3 X-Ray Inspection
519(1)
17.7.4 Thermography
519(1)
17.8 Physical Properties
519(3)
17.8.1 Density
520(1)
17.8.2 Fiber Volume Fraction
520(1)
17.8.3 Void Content
521(1)
17.8.4 Moisture Content
521(1)
17.9 Tensile and Compressive Testing
522(5)
17.9.1 Rosette Principle
523(1)
17.9.2 Tensile Test
524(2)
17.9.3 Compression Test
526(1)
17.10 Shear Testing
527(4)
17.10.1 Two-Rail Shear Test
527(3)
17.10.2 Three-Rail Shear Test
530(1)
References
531(2)
Index 533
Sumit Sharma is currently working as an Assistant Professor in the Department of Mechanical Engineering in Dr. B. R. Ambedkar National Institute of Technology (NIT) Jalandhar, India. His research interests include mechanics of composite materials, molecular dynamics, finite element modeling, strength of materials, fracture mechanics, mechanical vibrations, engineering drawing, theory of machines and dynamics of machines. He has been extensively working in the field of composite materials and has published more than 30 research papers in journals of national and international repute. He is the member of ASTM International, formerly known as American Society for Testing & Materials (ASTM) and life member of Indian Society of Mechanical Engineers (ISME).