|
Part I Acquisition of Diffusion MRI |
|
|
|
Comparing Simultaneous Multi-slice Diffusion Acquisitions |
|
|
3 | (10) |
|
|
|
|
|
|
|
4 | (1) |
|
|
5 | (1) |
|
|
5 | (1) |
|
|
6 | (4) |
|
|
10 | (3) |
|
|
10 | (3) |
|
Effect of Data Acquisition and Analysis Method on Fiber Orientation Estimation in Diffusion MRI |
|
|
13 | (12) |
|
|
|
|
|
|
|
14 | (1) |
|
|
14 | (2) |
|
2.1 Diffusion-Weighted Data Synthesis |
|
|
14 | (1) |
|
|
15 | (1) |
|
3 Application: Comparison of Fiber Estimation of Several Diffusion Analysis Methods |
|
|
16 | (6) |
|
3.1 Establishment of Ground-Truth |
|
|
16 | (1) |
|
|
17 | (1) |
|
|
17 | (2) |
|
|
19 | (3) |
|
4 Discussion and Conclusion |
|
|
22 | (3) |
|
|
23 | (2) |
|
Model-Based Super-Resolution of Diffusion MRI |
|
|
25 | (10) |
|
|
|
|
|
|
|
26 | (2) |
|
2 Model-Based Super-Resolution Reconstruction |
|
|
28 | (3) |
|
|
28 | (1) |
|
2.2 Super-Resolution Reconstruction |
|
|
29 | (1) |
|
2.3 SRR Optimization Procedure |
|
|
30 | (1) |
|
|
31 | (2) |
|
|
31 | (1) |
|
|
31 | (2) |
|
|
33 | (2) |
|
|
33 | (2) |
|
A Quantitative Evaluation of Errors Induced by Reduced Field-of-View in Diffusion Tensor Imaging |
|
|
35 | (12) |
|
|
|
|
|
|
|
36 | (1) |
|
|
37 | (3) |
|
|
37 | (1) |
|
2.2 Eddy Current and Head Motion Correction Schemes |
|
|
38 | (1) |
|
2.3 Registration Parameters |
|
|
38 | (1) |
|
|
39 | (1) |
|
|
40 | (2) |
|
3.1 Registration Parameters |
|
|
40 | (1) |
|
3.2 Precision of Registration |
|
|
40 | (1) |
|
|
40 | (2) |
|
3.4 Deviation in Fractional Anisotropy |
|
|
42 | (1) |
|
|
42 | (5) |
|
|
43 | (4) |
|
Part II Diffusion MRI Modeling |
|
|
|
The Diffusion Dictionary in the Human Brain Is Short: Rotation Invariant Learning of Basis Functions |
|
|
47 | (10) |
|
|
|
|
|
47 | (2) |
|
|
49 | (2) |
|
2.1 Representation of Basis Functions |
|
|
50 | (1) |
|
2.2 Implementation and Optimization |
|
|
50 | (1) |
|
|
51 | (3) |
|
|
54 | (3) |
|
|
55 | (2) |
|
Diffusion Propagator Estimation Using Radial Basis Functions |
|
|
57 | (10) |
|
|
|
|
|
|
|
|
|
58 | (1) |
|
|
58 | (1) |
|
3 Data Representation Using Radial Basis Functions (RBF) |
|
|
59 | (4) |
|
3.1 Application to Diffusion MRI |
|
|
60 | (1) |
|
3.2 Estimating the ADP with Radial Basis Functions |
|
|
60 | (2) |
|
3.3 Computing the Orientation Distribution Function (ODF) |
|
|
62 | (1) |
|
|
62 | (1) |
|
|
63 | (2) |
|
|
63 | (2) |
|
|
65 | (2) |
|
|
66 | (1) |
|
A Framework for ODF Inference by Using Fiber Tract Adaptive MPG Selection |
|
|
67 | (14) |
|
|
|
|
|
67 | (3) |
|
|
67 | (1) |
|
1.2 Problem Statement and Objective |
|
|
68 | (2) |
|
|
70 | (2) |
|
2.1 Interpolation with SRBF |
|
|
70 | (1) |
|
|
70 | (2) |
|
|
72 | (1) |
|
|
72 | (3) |
|
3.1 Simulation Experiments |
|
|
73 | (1) |
|
|
74 | (1) |
|
3.3 Clinical Image Experiments |
|
|
75 | (1) |
|
|
75 | (3) |
|
4.1 Simulation Experiments |
|
|
75 | (2) |
|
|
77 | (1) |
|
4.3 Clinical Image Experiments |
|
|
78 | (1) |
|
|
78 | (3) |
|
|
78 | (3) |
|
Non-negative Spherical Deconvolution (NNSD) for Fiber Orientation Distribution Function Estimation |
|
|
81 | (16) |
|
|
|
|
|
|
|
82 | (1) |
|
2 Background on SD Methods |
|
|
83 | (2) |
|
3 Non-negative Spherical Deconvolution (NNSD) |
|
|
85 | (2) |
|
|
87 | (4) |
|
|
90 | (1) |
|
5 Discussion and Conclusion |
|
|
91 | (6) |
|
|
92 | (5) |
|
|
|
A Novel Riemannian Metric for Geodesic Tractography in DTI |
|
|
97 | (8) |
|
|
|
|
|
|
|
97 | (1) |
|
|
98 | (2) |
|
|
98 | (1) |
|
2.2 Riemannian Framework Revisited |
|
|
99 | (1) |
|
|
100 | (2) |
|
|
100 | (1) |
|
|
101 | (1) |
|
4 Conclusion and Discussion |
|
|
102 | (3) |
|
|
103 | (2) |
|
Fiberfox: An Extensible System for Generating Realistic White Matter Software Phantoms |
|
|
105 | (10) |
|
|
|
|
|
|
106 | (1) |
|
|
107 | (3) |
|
|
107 | (1) |
|
|
107 | (1) |
|
|
108 | (1) |
|
2.4 Simulations and Experiments |
|
|
109 | (1) |
|
|
110 | (2) |
|
4 Discussion and Conclusion |
|
|
112 | (3) |
|
|
112 | (3) |
|
Choosing a Tractography Algorithm: On the Effects of Measurement Noise |
|
|
115 | (14) |
|
|
|
|
|
|
115 | (2) |
|
|
117 | (4) |
|
2.1 Data Acquisition and Subjects |
|
|
117 | (1) |
|
2.2 Creation of the Reference Dataset |
|
|
118 | (1) |
|
2.3 Choice of Algorithms and Parameters |
|
|
119 | (1) |
|
2.4 Evaluating Tractography Robustness |
|
|
120 | (1) |
|
|
121 | (3) |
|
|
124 | (3) |
|
|
127 | (2) |
|
|
127 | (2) |
|
Uncertainty in Tractography via Tract Confidence Regions |
|
|
129 | (10) |
|
|
|
|
|
129 | (2) |
|
|
131 | (2) |
|
2.1 Path Confidence Regions |
|
|
131 | (1) |
|
2.2 Confidence Region Visualization |
|
|
132 | (1) |
|
|
133 | (4) |
|
|
137 | (2) |
|
|
137 | (2) |
|
Estimating Uncertainty in White Matter Tractography Using Wild Non-local Bootstrap |
|
|
139 | (12) |
|
|
|
|
|
|
140 | (1) |
|
|
141 | (2) |
|
2.1 Non-local Estimation as Non-parametric Kernel Regression |
|
|
141 | (1) |
|
2.2 Wild Non-local Bootstrap (W-NLB) |
|
|
142 | (1) |
|
|
143 | (1) |
|
|
143 | (3) |
|
|
143 | (2) |
|
|
145 | (1) |
|
|
146 | (5) |
|
|
147 | (4) |
|
Part IV Group Studies and Statistical Analysis |
|
|
|
Groupwise Deformable Registration of Fiber Track Sets Using Track Orientation Distributions |
|
|
151 | (12) |
|
|
|
|
|
|
|
151 | (1) |
|
|
152 | (2) |
|
2.1 Track Orientation Distribution |
|
|
152 | (1) |
|
2.2 TOD Registration and Reorientation |
|
|
153 | (1) |
|
3 Experiments and Results |
|
|
154 | (4) |
|
3.1 Data, Processing and Fiber Tracking |
|
|
154 | (1) |
|
3.2 Experiment 1: Synthetically Deformed Single Subject |
|
|
155 | (1) |
|
3.3 Experiment 2: Multiple Subjects |
|
|
156 | (2) |
|
|
158 | (1) |
|
5 Conclusion and Future Work |
|
|
159 | (4) |
|
|
160 | (3) |
|
Groupwise Registration for Correcting Subject Motion and Eddy Current Distortions in Diffusion MRI Using a PCA Based Dissimilarity Metric |
|
|
163 | (12) |
|
|
|
|
|
|
|
|
|
164 | (1) |
|
|
164 | (5) |
|
2.1 Groupwise Registration Framework |
|
|
164 | (1) |
|
|
165 | (1) |
|
|
166 | (1) |
|
|
167 | (1) |
|
|
168 | (1) |
|
2.6 Groupwise Approaches Proposed by Others |
|
|
168 | (1) |
|
|
168 | (1) |
|
3 Experiments and Results |
|
|
169 | (3) |
|
|
169 | (2) |
|
3.2 Real Diffusion Weighted Data |
|
|
171 | (1) |
|
|
172 | (3) |
|
|
173 | (2) |
|
Fiber Based Comparison of Whole Brain Tractographies with Application to Amyotrophic Lateral Sclerosis |
|
|
175 | (12) |
|
|
|
|
|
|
|
|
|
175 | (2) |
|
|
177 | (5) |
|
|
182 | (2) |
|
4 Discussion and Future Work |
|
|
184 | (3) |
|
|
184 | (3) |
|
Statistical Analysis of White Matter Integrity for the Clinical Study of Typical Specific Language Impairment in Children |
|
|
187 | (12) |
|
|
|
|
|
|
|
|
|
|
|
188 | (1) |
|
|
189 | (2) |
|
|
189 | (1) |
|
|
189 | (1) |
|
|
190 | (1) |
|
|
191 | (1) |
|
|
191 | (1) |
|
3.2 Tractography-Based Analysis |
|
|
192 | (1) |
|
4 Discussion and Conclusion |
|
|
192 | (7) |
|
|
194 | (5) |
|
Part V Brain Connectivity |
|
|
|
Disrupted Brain Connectivity in Alzheimer's Disease: Effects of Network Thresholding |
|
|
199 | (10) |
|
|
|
|
|
|
|
|
|
|
200 | (1) |
|
|
201 | (3) |
|
2.1 Subjects and Diffusion Imaging of the Brain |
|
|
201 | (1) |
|
|
201 | (1) |
|
2.3 Brain Network Measures |
|
|
202 | (2) |
|
|
204 | (2) |
|
|
206 | (3) |
|
|
207 | (2) |
|
Rich Club Analysis of Structural Brain Connectivity at 7 Tesla Versus 3 Tesla |
|
|
209 | (10) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
210 | (1) |
|
|
211 | (3) |
|
2.1 Subject Demographic and Image Acquisition |
|
|
211 | (1) |
|
2.2 Image Preprocessing and Registration |
|
|
211 | (1) |
|
2.3 Brain Connectivity Computation |
|
|
212 | (1) |
|
|
212 | (2) |
|
|
214 | (2) |
|
3.1 Rich Club Coefficient (φ(k) and φnorm(k)) |
|
|
214 | (1) |
|
3.2 Rich Club Organization: Young Cohort Results |
|
|
214 | (1) |
|
3.3 Rich Club Organization: AD/HC Comparison |
|
|
215 | (1) |
|
|
216 | (1) |
|
|
217 | (2) |
|
|
217 | (2) |
|
Coupled Intrinsic Connectivity: A Principled Method for Exploratory Analysis of Paired Data |
|
|
219 | (11) |
|
|
|
|
|
|
|
|
219 | (2) |
|
|
221 | (2) |
|
3 Functional Connectivity Estimation |
|
|
223 | (1) |
|
|
224 | (2) |
|
|
226 | (4) |
|
|
226 | (4) |
|
Power Estimates for Voxel-Based Genetic Association Studies Using Diffusion Imaging |
|
|
230 | (9) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
230 | (2) |
|
|
232 | (3) |
|
2.1 Heritability and Power Estimates |
|
|
232 | (1) |
|
2.2 HWE, MAF, and Multiple Comparisons Correction |
|
|
233 | (1) |
|
2.3 Accounting for Uncertainties in Genotype Frequency |
|
|
234 | (1) |
|
2.4 Voxelwise GWAS of the ADNI2 Dataset |
|
|
235 | (1) |
|
|
235 | (1) |
|
3.1 Voxels with Power > 0.8 as Functions of N, MAFc, HWEc |
|
|
235 | (1) |
|
3.2 Voxelwise GWAS in the ADNI2 Dataset |
|
|
235 | (1) |
|
|
236 | (3) |
|
|
237 | (2) |
|
Global Changes in the Connectome in Autism Spectrum Disorders |
|
|
239 | (14) |
|
|
|
|
|
|
|
|
|
|
|
240 | (1) |
|
|
240 | (2) |
|
|
242 | (4) |
|
|
246 | (7) |
|
|
246 | (7) |
Index |
|
253 | |