Muutke küpsiste eelistusi

Computational Diffusion MRI: MICCAI Workshop, Athens, Greece, October 2016 Softcover reprint of the original 1st ed. 2017 [Pehme köide]

Edited by , Edited by , Edited by , Edited by , Edited by
  • Formaat: Paperback / softback, 212 pages, kõrgus x laius: 235x155 mm, kaal: 454 g, 66 Illustrations, color; 4 Illustrations, black and white; XI, 212 p. 70 illus., 66 illus. in color., 1 Paperback / softback
  • Sari: Mathematics and Visualization
  • Ilmumisaeg: 28-Jul-2018
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319853260
  • ISBN-13: 9783319853260
  • Pehme köide
  • Hind: 95,02 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 111,79 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 212 pages, kõrgus x laius: 235x155 mm, kaal: 454 g, 66 Illustrations, color; 4 Illustrations, black and white; XI, 212 p. 70 illus., 66 illus. in color., 1 Paperback / softback
  • Sari: Mathematics and Visualization
  • Ilmumisaeg: 28-Jul-2018
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319853260
  • ISBN-13: 9783319853260
This volume offers a valuable starting point for anyone interested in learning computational diffusion MRI and mathematical methods for brain connectivity, while also sharing new perspectives and insights on the latest research challenges for those currently working in the field.





Over the last decade, interest in diffusion MRI has virtually exploded. The technique provides unique insights into the microstructure of living tissue and enables in-vivo connectivity mapping of the brain. Computational techniques are key to the continued success and development of diffusion MRI and to its widespread transfer into the clinic, while new processing methods are essential to addressing issues at each stage of the diffusion MRI pipeline: acquisition, reconstruction, modeling and model fitting, image processing, fiber tracking, connectivity mapping, visualization, group studies and inference.





These papers from the 2016 MICCAI Workshop Computational Diffusion MRI which was intended to provide a snapshot of the latest developments within the highly active and growing field of diffusion MR cover a wide range of topics, from fundamental theoretical work on mathematical modeling, to the development and evaluation of robust algorithms and applications in neuroscientific studies and clinical practice. The contributions include rigorous mathematical derivations, a wealth of rich, full-color visualizations, and biologically or clinically relevant results. As such, they will be of interest to researchers and practitioners in the fields of computer science, MR physics, and applied mathematics. 
The MR Physics of Advanced Diffusion Imaging: Matt Hall.- Noise Floor
Removal via Phase Correction of Complex Diffusion-Weighted Images: Influence
on DTI and q-Space Metrics: M. Pizzolato et al.- Regularized Dictionary
Learning with Robust Sparsity Fitting for Compressed Sensing Multishell
HARDI: K. Gupta et al.- Denoising Diffusion-Weighted Images Using Grouped
Iterative Hard Thresholding of Multi-Channel Framelets: Jian Zhang et al.-
Diffusion MRI Signal Augmentation From Single Shell to Multi Shell with
Deep Learning: S. Koppers et al.- Multi-Spherical Diffusion MRI: Exploring
Diffusion Time Using Signal Sparsity: R.H.J. Fick et al.- Sensitivity of OGSE
ActiveAx to Microstructural Dimensions on a Clinical Scanner: L.S. Kakkar et
al.- Groupwise Structural Parcellation of the Cortex: A Sound Approach Based
on Logistic Models: G. Gallardo et al.- Robust Construction of Diffusion MRI
Atlases with Correction for Inter-Subject Fiber Dispersion: Z. Yang et al.-
Parcellation of Human Amygdala Subfields Using Orientation Distribution
Function and Spectral K-means Clustering: Q. Wen et al.- Sparse
Representation for White Matter Fiber Compression and Calculation of
Inter-Fiber Similarity: G. Zimmerman Moreno et al.- An Unsupervised Group
Average Cortical Parcellation using Diffusion MRI to Probe Cytoarchitecture:
T. Ganepola et al.- Using multiple Diffusion MRI Measures to Predict
Alzheimers Disease with a TV-L1 Prior: J.E. Villalon-Reina et al.- Accurate
Diagnosis of SWEDD vs. Parkinson Using Microstructural Changes of Cingulum
Bundle: Track-Specific Analysis: F. Rahmani et al.- Colocalization of
Functional Activity and Neurite Density within Cortical Areas: A. Teillac et
al.- Comparison of Biomarkers in Transgenic Alzheimer Rats Using Multi-shell
Diffusion MRI: R.H.J. Fick.- Working Memory Function in Recent-onset
Schizophrenia Patients Associated with White Matter Microstructure:
Connectometry Approach: M. Dolatshahi et al.