Muutke küpsiste eelistusi

Computational Diffusion MRI: MICCAI Workshop, Munich, Germany, October 9th, 2015 Softcover reprint of the original 1st ed. 2016 [Pehme köide]

Edited by , Edited by , Edited by , Edited by , Edited by
  • Formaat: Paperback / softback, 234 pages, kõrgus x laius: 235x155 mm, kaal: 4196 g, 63 Illustrations, color; 20 Illustrations, black and white; IX, 234 p. 83 illus., 63 illus. in color., 1 Paperback / softback
  • Sari: Mathematics and Visualization
  • Ilmumisaeg: 25-Apr-2018
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319803816
  • ISBN-13: 9783319803814
  • Pehme köide
  • Hind: 95,02 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 111,79 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 234 pages, kõrgus x laius: 235x155 mm, kaal: 4196 g, 63 Illustrations, color; 20 Illustrations, black and white; IX, 234 p. 83 illus., 63 illus. in color., 1 Paperback / softback
  • Sari: Mathematics and Visualization
  • Ilmumisaeg: 25-Apr-2018
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319803816
  • ISBN-13: 9783319803814
These Proceedings of the 2015 MICCAI Workshop Computational Diffusion MRI offer a snapshot of the current state of the art on a broad range of topics within the highly active and growing field of diffusion MRI. The topics vary from fundamental theoretical work on mathematical modeling, to the development and evaluation of robust algorithms, new computational methods applied to diffusion magnetic resonance imaging data, and applications in neuroscientific studies and clinical practice.





Over the last decade interest in diffusion MRI has exploded. The technique provides unique insights into the microstructure of living tissue and enables in-vivo connectivity mapping of the brain. Computational techniques are key to the continued success and development of diffusion MRI and to its widespread transfer into clinical practice. New processing methods are essential for addressing issues at each stage of the diffusion MRI pipeline: acquisition, reconstruction, modeling and model fitting, image processing, fiber tracking, connectivity mapping, visualization, group studies and inference.



This volume, which includes both careful mathematical derivations and a wealth of rich, full-color visualizations and biologically or clinically relevant results, offers a valuable starting point for anyone interested in learning about computational diffusion MRI and mathematical methods for mapping brain connectivity, as well as new perspectives and insights on current research challenges for those currently working in the field. It will be of interest to researchers and practitioners in the fields of computer science, MR physics, and applied mathematics.
An Efficient Finite
Element Solution of the Generalised Bloch-Torrey Equation for Arbitrary
Domains: L. Beltrachini et al.- Super-Resolution Reconstruction of
Diffusion-Weighted Images using 4D Low-Rank and Total Variation: Feng Shi et
al.- Holistic Image Reconstruction for Diffusion MRI: V. Golkov et al.-
Alzheimers
Disease Classification with Novel Microstructural Metrics from
Diffusion-Weighted MRI: T. M. Nir et al.- Brain Tissue Micro-Structure
Imaging
from Diffusion MRI Using Least Squares Variable Separation: H. Farooq et
al.-
Multi-Tensor MAPMRI: How to Estimate Microstructural Information from
Crossing
Fibers: M. Zucchelli et al.- On the Use of Antipodal Optimal Dimensionality
Sampling Scheme on the Sphere for Recovering Intra-Voxel Fibre Structure in
Diffusion MRI: A.P. Bates et al.- Estimation of Fiber Orientations Using
Neighborhood Information: C. Ye et al.- A framework for creating population
specific multimodal brain atlas using clinical T1 and diffusion tensor
images:
V. Gupta et al.- Alignment of Tractograms as Linear Assignment Problem: N.
Sharmin.-
Accelerating Global Tractography Using Parallel Markov Chain Monte Carlo: H.
Wu
et al.- Adaptive Enhancement in Diffusion MRI Through Propagator Sharpening:
T.
Dela Haije et al.- Angular Resolution Enhancement of Diffusion MRI Data
Using
Inter-Image Information Transfer: Geng Chen et al.- Crossing versus Fanning:
Model Comparison Using HCP Data: A. Ghosh et al.- White Matter Fiber Set
Simplification by Redundancy Reduction with Minimum Anatomical Information
Loss: G. Zimmerman Moreno et al.- A Temperature Phantom to Probe the
Ensemble
Average Propagator Asymmetry: an In-Silico Study: M. Pizzolato et al.-
Registration Strategies for Whole-Body Diffusion-Weighted MRI Stitching: J.
Ceranka et al.- HARDI Feature Selection, Registration and Atlas Building for
A$\beta$ Pathology Classification: E. Schwab et al.- Reliability of
Structural
Connectivity Examined with Four Different Diffusion Reconstruction Methods
at
Two Different Spatial and Angular Resolutions: J. E. Villalon-Reina et al.