Preface |
|
xix | |
Acknowledgements |
|
xxiii | |
|
Chapter 1 Overview of CFD |
|
|
1 | (8) |
|
|
1 | (1) |
|
1.2 Basic Principles of CFD |
|
|
2 | (1) |
|
1.3 What Does a CFD Algorithm Do? |
|
|
2 | (1) |
|
1.4 Stages of a CFD Analysis |
|
|
3 | (2) |
|
|
3 | (1) |
|
|
4 | (1) |
|
|
4 | (1) |
|
|
5 | (1) |
|
|
5 | (1) |
|
1.6.1 Finite Difference Method |
|
|
5 | (1) |
|
1.6.2 Finite Volume Method |
|
|
5 | (1) |
|
1.6.3 Finite Element Method |
|
|
5 | (1) |
|
1.7 Discretization Properties |
|
|
6 | (1) |
|
|
7 | (2) |
|
Chapter 2 Governing Equations and Classification of PDE |
|
|
9 | (24) |
|
|
9 | (1) |
|
|
9 | (1) |
|
|
9 | (1) |
|
|
9 | (1) |
|
2.2 Conservative Form of the Flow Equations |
|
|
9 | (15) |
|
|
9 | (1) |
|
2.2.1.1 Derivation of Continuity Equation |
|
|
10 | (2) |
|
|
12 | (1) |
|
2.2.2.1 Derivation of X-Momentum Equation |
|
|
13 | (3) |
|
|
16 | (2) |
|
2.2.3.1 Derivation of Energy Equation |
|
|
18 | (5) |
|
|
23 | (1) |
|
|
24 | (1) |
|
2.3.1 Conservative and Non-Conservative Forms of Equations |
|
|
24 | (1) |
|
2.3.2 Compressible and Incompressible Flow |
|
|
24 | (1) |
|
Physical and Mathematical Classification of Partial Differential Equations |
|
|
25 | (1) |
|
|
25 | (1) |
|
|
25 | (1) |
|
2.6 Mathematical Classification |
|
|
26 | (1) |
|
|
27 | (1) |
|
2.8 Boundary Conditions (BCs) |
|
|
28 | (2) |
|
|
29 | (1) |
|
|
29 | (1) |
|
2.8.1.2 Stagnation (Reservoir) |
|
|
29 | (1) |
|
|
29 | (1) |
|
|
29 | (1) |
|
|
29 | (1) |
|
2.8.2.3 Radiation (Convection) |
|
|
29 | (1) |
|
|
29 | (1) |
|
|
29 | (1) |
|
|
29 | (1) |
|
2.8.4 Other Boundary Conditions |
|
|
30 | (1) |
|
2.8.4.1 Symmetry Plane and Axis Boundary |
|
|
30 | (1) |
|
|
30 | (1) |
|
|
30 | (1) |
|
|
30 | (3) |
|
Chapter 3 Finite Difference Method: Fundamentals |
|
|
33 | (16) |
|
|
33 | (1) |
|
3.2 Taylor Series Expansion |
|
|
34 | (4) |
|
|
38 | (1) |
|
3.4 Difference Representation of PDE |
|
|
39 | (5) |
|
|
39 | (1) |
|
|
39 | (1) |
|
|
40 | (1) |
|
|
40 | (1) |
|
|
41 | (1) |
|
3.4.3.1 Von Neumann's Method |
|
|
42 | (1) |
|
|
43 | (1) |
|
3.4.5 Lax's Equivalence Theorem |
|
|
43 | (1) |
|
|
44 | (1) |
|
|
44 | (2) |
|
|
46 | (1) |
|
|
46 | (3) |
|
Chapter 4 Finite Difference Method: Application |
|
|
49 | (62) |
|
|
49 | (1) |
|
4.2 One-Dimensional Diffusion Equations |
|
|
49 | (12) |
|
|
50 | (1) |
|
4.2.1.1 The Forward Time, Central Space |
|
|
50 | (1) |
|
4.2.1.2 The Richardson's Method |
|
|
51 | (2) |
|
4.2.1.3 The DuFort-Frankel Method (D-F Leap-Frog Method) |
|
|
53 | (2) |
|
|
55 | (1) |
|
4.2.2.1 The Classical Implicit Method |
|
|
55 | (2) |
|
4.2.2.2 The Crank-Nicolson Method |
|
|
57 | (3) |
|
4.2.2.3 The Method of Weighted Averages |
|
|
60 | (1) |
|
4.3 One-Dimensional Transport Equations |
|
|
61 | (12) |
|
|
62 | (1) |
|
|
62 | (1) |
|
4.3.1.2 Upwind Differencing |
|
|
63 | (3) |
|
4.3.1.3 The Lax Method (Lax-Friedrichs Method) |
|
|
66 | (1) |
|
4.3.1.4 The Lax-Wendroff Method |
|
|
67 | (1) |
|
4.3.1.5 The Two-Step Lax-Wendroff Method |
|
|
68 | (1) |
|
4.3.1.6 The MacCormack Method |
|
|
68 | (1) |
|
4.3.1.7 The Beam-Warming Method |
|
|
69 | (1) |
|
4.3.1.8 The Implicit Method |
|
|
70 | (1) |
|
4.3.2 The Complete Transport Equation |
|
|
71 | (1) |
|
4.3.2.1 Central Difference |
|
|
71 | (1) |
|
4.3.2.2 The Richardson Method |
|
|
72 | (1) |
|
4.3.2.3 The DuFort-Frankel Method |
|
|
72 | (1) |
|
4.3.2.4 The Upwind Method |
|
|
73 | (1) |
|
4.4 Two-Dimensional Diffusion Equation |
|
|
73 | (6) |
|
4.4.1 The Explicit Method |
|
|
74 | (1) |
|
|
75 | (1) |
|
4.4.2.1 The Fully Implicit Method |
|
|
75 | (1) |
|
4.4.2.2 The Crank-Nicolson Method |
|
|
75 | (1) |
|
4.4.2.3 The Alternate Direction Implicit (ADI) Method |
|
|
75 | (2) |
|
4.4.2.4 Comments on Diffusion Equations |
|
|
77 | (1) |
|
4.4.2.5 Further Comments on Conservative vs. Non-Conservative Variables |
|
|
77 | (1) |
|
4.4.2.6 The Grid (Mesh) Independence Study |
|
|
78 | (1) |
|
|
79 | (16) |
|
4.5.1 The Inviscid Burgers' Equation |
|
|
81 | (1) |
|
4.5.1.1 Upwind Differencing |
|
|
81 | (1) |
|
4.5.1.2 The Lax (Lax-Friedrichs) Method |
|
|
81 | (1) |
|
4.5.1.3 The Lax-Wendroff Method |
|
|
82 | (1) |
|
4.5.1.4 The MacCormack Method |
|
|
83 | (1) |
|
|
84 | (1) |
|
4.5.1.6 The Godunov Method |
|
|
84 | (5) |
|
|
89 | (3) |
|
4.5.2 The Viscid Burgers' Equation |
|
|
92 | (1) |
|
|
93 | (1) |
|
4.5.2.2 The DuFort-Frankel Method |
|
|
93 | (1) |
|
4.5.2.3 The Lax-Wendroff Method |
|
|
94 | (1) |
|
4.5.2.4 The MacCormack Method |
|
|
94 | (1) |
|
|
95 | (1) |
|
|
95 | (12) |
|
|
107 | (1) |
|
|
107 | (4) |
|
Chapter 5 Finite Volume Method |
|
|
111 | (70) |
|
|
111 | (1) |
|
5.2 The Diffusion Equation |
|
|
112 | (9) |
|
5.2.1 The Steady-State One-Dimensional Diffusion Equation |
|
|
113 | (2) |
|
5.2.2 Discretization of the Source Term |
|
|
115 | (1) |
|
5.2.3 Discretized Equation at Boundaries |
|
|
116 | (1) |
|
5.2.3.1 For Given Value at the Boundaries (Dirichlet Boundary Conditions) |
|
|
116 | (1) |
|
5.2.3.2 Insulated Boundary |
|
|
116 | (1) |
|
5.2.3.3 Mixed Boundary Conditions |
|
|
117 | (1) |
|
5.2.4 Assembling the Algebraic Equations |
|
|
117 | (1) |
|
5.2.5 Extension to Two Dimensions |
|
|
118 | (1) |
|
5.2.6 Extension to Three Dimensions |
|
|
119 | (1) |
|
5.2.7 Desirable Properties of a Discretization Scheme |
|
|
119 | (1) |
|
5.2.8 Further Comments on Interface Diffusion Coefficients |
|
|
120 | (1) |
|
5.3 The Convection-Diffusion Equation |
|
|
121 | (36) |
|
5.3.1 The Steady-State One-Dimensional Advection-Diffusion Equation |
|
|
122 | (1) |
|
5.3.1.1 The Central Differencing Scheme |
|
|
122 | (2) |
|
5.3.1.2 The Upwind Differencing Scheme |
|
|
124 | (3) |
|
|
127 | (1) |
|
5.3.1.4 The Exponential Scheme |
|
|
128 | (1) |
|
5.3.1.5 The Hybrid Differencing Scheme |
|
|
129 | (1) |
|
5.3.1.6 The Second Order Upwind (SOU) Scheme |
|
|
130 | (2) |
|
5.3.1.7 The Quadratic Upstream Interpolation for Convective Kinetics (QUICK) Scheme |
|
|
132 | (1) |
|
|
133 | (2) |
|
5.3.1.9 Advantages and Disadvantages of Various Convective Schemes |
|
|
135 | (1) |
|
5.3.2 Deferred Correction Approach |
|
|
135 | (1) |
|
|
136 | (1) |
|
|
137 | (1) |
|
|
138 | (1) |
|
|
139 | (1) |
|
5.3.3 Extension to Two Dimension |
|
|
140 | (1) |
|
|
141 | (1) |
|
|
142 | (1) |
|
|
143 | (1) |
|
|
144 | (1) |
|
|
145 | (1) |
|
5.3.4 Extension to Three Dimension |
|
|
146 | (1) |
|
|
147 | (1) |
|
|
147 | (1) |
|
|
147 | (1) |
|
|
148 | (1) |
|
|
148 | (1) |
|
5.3.5 High Resolution and Bounded Convective Schemes |
|
|
148 | (1) |
|
5.3.5.1 Normalized Variable Formulation |
|
|
149 | (2) |
|
5.3.5.2 Convective Boundedness Criteria |
|
|
151 | (1) |
|
5.3.5.3 High-Resolution Schemes |
|
|
151 | (2) |
|
5.3.5.4 The TVD Framework |
|
|
153 | (3) |
|
5.3.5.5 Implementation of Various Convective Schemes in Code |
|
|
156 | (1) |
|
5.4 Time-Dependent Methods |
|
|
157 | (2) |
|
|
158 | (1) |
|
5.4.1.1 Forward Differencing (Euler Method) |
|
|
158 | (1) |
|
5.4.1.2 Backward Differencing (Backward Euler) |
|
|
158 | (1) |
|
5.4.1.3 Central Differencing (Crank-Nicolson) |
|
|
158 | (1) |
|
5.5 Time Discretization Methods Applied to the General Scalar Transport Equation |
|
|
159 | (2) |
|
5.5.1 Forward Differencing - Explicit Scheme |
|
|
159 | (1) |
|
5.5.2 Backward Differencing - Implicit Scheme |
|
|
159 | (1) |
|
5.5.3 Crank-Nicolson - Central Difference Scheme |
|
|
160 | (1) |
|
|
161 | (1) |
|
5.7 Uses of Time-Marching in CFD |
|
|
161 | (1) |
|
5.8 Implementation of Boundary Conditions in Code |
|
|
161 | (2) |
|
5.8.1 Generalized Boundary Conditions |
|
|
161 | (1) |
|
5.8.2 Convective Boundary Conditions |
|
|
162 | (1) |
|
|
163 | (14) |
|
|
177 | (2) |
|
|
179 | (2) |
|
Chapter 6 Solution of Incompressible Navier-Stokes Equations |
|
|
181 | (26) |
|
|
181 | (1) |
|
6.2 Pressure-Velocity Coupling |
|
|
182 | (2) |
|
6.3 The Vorticity-Stream Function Method |
|
|
184 | (3) |
|
6.3.1 Boundary Conditions |
|
|
186 | (1) |
|
6.4 Primitive Variable Methods |
|
|
187 | (3) |
|
6.4.1 Co-located Storage of Variables |
|
|
187 | (2) |
|
|
189 | (1) |
|
6.5 Solution Methods for the Primitive Variable Form of N-S Equations |
|
|
190 | (3) |
|
6.5.1 The Artificial Compressibility Method |
|
|
190 | (1) |
|
6.5.2 The Pressure Correction Approach |
|
|
191 | (1) |
|
|
192 | (1) |
|
6.5.2.2 The Fractional Step Pressure Projection Method |
|
|
192 | (1) |
|
|
193 | (5) |
|
6.6.1 Derivation of Velocity Correction and Pressure Correction Equations |
|
|
193 | (1) |
|
6.6.1.1 Pressure and Velocity Corrections |
|
|
194 | (1) |
|
6.6.2 Pressure Correction Equation |
|
|
195 | (1) |
|
6.6.3 The SIMPLE Algorithm |
|
|
196 | (2) |
|
|
198 | (6) |
|
6.7.1 The SIMPLER Algorithm |
|
|
199 | (2) |
|
6.7.2 The SIMPLEC Algorithm |
|
|
201 | (1) |
|
6.7.3 The PISO (Pressure Implicit with Split Operator) Algorithm |
|
|
202 | (2) |
|
|
204 | (1) |
|
|
205 | (2) |
|
Chapter 7 Finite Volume Method for Complex Geometries |
|
|
207 | (46) |
|
|
207 | (1) |
|
7.2 Staggered Grid Algorithm |
|
|
207 | (1) |
|
7.3 The Co-located Grid Algorithm |
|
|
208 | (2) |
|
7.4 Discretization Methods for Non-Orthogonal Structured Grids |
|
|
210 | (7) |
|
7.4.1 The Continuity Equation |
|
|
211 | (1) |
|
7.4.2 The Transport Equation |
|
|
211 | (1) |
|
7.4.2.1 Discretization of Convective Flux |
|
|
212 | (2) |
|
7.4.2.2 Discretization of Diffusive Flux |
|
|
214 | (2) |
|
7.4.2.3 Discretization of Pressure Term |
|
|
216 | (1) |
|
7.4.2.4 Implementation of the QUICK Scheme |
|
|
216 | (1) |
|
7.5 Solution of the Pressure Field |
|
|
217 | (5) |
|
7.5.1 Derivation of Pressure Correction and Velocity Correction Equations |
|
|
217 | (2) |
|
7.5.2 Implementation of Momentum Interpolation |
|
|
219 | (3) |
|
7.6 Extension to Three Dimension |
|
|
222 | (9) |
|
7.6.1 Discretization of Continuity Equations |
|
|
223 | (1) |
|
7.6.2 Discretization of Convective Flux |
|
|
223 | (1) |
|
7.6.3 Discretization of Diffusive Flux |
|
|
224 | (3) |
|
7.6.4 Discretization of the Pressure Term |
|
|
227 | (1) |
|
7.6.5 Implementation of the QUICK Scheme |
|
|
227 | (1) |
|
7.6.6 Implementation of the SIMPLE Algorithm |
|
|
228 | (3) |
|
7.7 Discretization Method for the Cartesian Structured Grid |
|
|
231 | (9) |
|
7.7.1 The Continuity Equation |
|
|
231 | (2) |
|
7.7.2 The Transport Equation |
|
|
233 | (1) |
|
7.7.2.1 Discretization of Convective Flux |
|
|
233 | (1) |
|
7.7.2.2 Discretization of Diffusive Flux |
|
|
234 | (1) |
|
7.7.2.3 Discretization of the Pressure Term |
|
|
235 | (1) |
|
7.7.2.4 Implementation of the QUICK Scheme |
|
|
235 | (1) |
|
7.7.2.5 Derivation of Pressure Correction and Velocity Correction Equation |
|
|
236 | (2) |
|
7.7.2.6 Implementation of the Momentum Interpolation |
|
|
238 | (2) |
|
7.8 Discretization Method for the Non-Orthogonal Unstructured Grid |
|
|
240 | (5) |
|
7.8.1 The Continuity Equation |
|
|
240 | (1) |
|
7.8.2 The Transport Equation |
|
|
240 | (2) |
|
7.8.2.1 Discretization of Convective Flux |
|
|
242 | (1) |
|
7.8.2.2 Discretization of Diffusive Flux |
|
|
242 | (3) |
|
7.8.2.3 Discretization of the Pressure Term |
|
|
245 | (1) |
|
7.9 Solution of the Pressure Field |
|
|
245 | (5) |
|
7.9.1 Derivation of Pressure Correction and Velocity Correction Equations |
|
|
245 | (2) |
|
7.9.2 Implementation of the Momentum Interpolation |
|
|
247 | (2) |
|
7.9.3 Implementation of Higher-Order Schemes |
|
|
249 | (1) |
|
|
250 | (1) |
|
|
250 | (3) |
|
Chapter 8 Solution of Algebraic Equations |
|
|
253 | (26) |
|
|
253 | (1) |
|
|
253 | (5) |
|
|
253 | (2) |
|
|
255 | (1) |
|
8.2.3 Tri-Diagonal Matrix Algorithm |
|
|
256 | (2) |
|
|
258 | (4) |
|
|
258 | (1) |
|
8.3.2 The Point Gauss-Seidel Method |
|
|
259 | (1) |
|
8.3.3 Point Successive Over-Relaxation Method |
|
|
260 | (1) |
|
8.3.4 The Line Gauss-Seidel Method |
|
|
260 | (1) |
|
8.3.5 Convergence of the Iterative Methods |
|
|
261 | (1) |
|
8.4 Conjugate Gradient (CG) Methods |
|
|
262 | (2) |
|
8.4.1 The Pre-Conditioned BCG Method |
|
|
263 | (1) |
|
8.4.2 The Pre-Conditioned CGS Method |
|
|
263 | (1) |
|
8.5 The Incomplete L-U Decomposition Method |
|
|
264 | (4) |
|
|
264 | (1) |
|
8.5.2 Pre-Conditioning by L-U Decomposition |
|
|
265 | (3) |
|
|
268 | (4) |
|
|
269 | (1) |
|
|
270 | (1) |
|
|
270 | (1) |
|
|
271 | (1) |
|
|
272 | (4) |
|
|
276 | (1) |
|
|
277 | (2) |
|
Chapter 9 Turbulence Modeling |
|
|
279 | (22) |
|
|
279 | (1) |
|
|
279 | (1) |
|
9.2.1 Characteristics of Turbulent Flows |
|
|
279 | (1) |
|
9.2.2 Task of Turbulence Modeling |
|
|
280 | (1) |
|
9.3 Direct Numerical Simulation (DNS) |
|
|
280 | (1) |
|
|
281 | (4) |
|
9.4.1 Reynolds-Averaged Navier-Stokes (RANS) Equations |
|
|
281 | (3) |
|
9.4.2 Eddy Viscosity Models Hypothesis |
|
|
284 | (1) |
|
9.5 RANS Turbulence Models |
|
|
285 | (10) |
|
9.5.1 Zero-Equation Models |
|
|
285 | (1) |
|
9.5.1.1 Structure of the Turbulent Boundary Layer |
|
|
286 | (1) |
|
9.5.2 Key Modifications of Prandtl's Mixing Length Model |
|
|
287 | (1) |
|
9.5.2.1 The Cebaci-Smith Model |
|
|
287 | (1) |
|
9.5.2.2 The Baldwin-Lomax Model |
|
|
288 | (1) |
|
9.5.3 The Transport Equation for Turbulent Kinetic Energy (One-Equation Model) |
|
|
288 | (1) |
|
9.5.4 Two-Equation Models |
|
|
289 | (1) |
|
9.5.4.1 The Standard k-ε Model |
|
|
290 | (1) |
|
9.5.4.2 The Wilcox k-ω Model |
|
|
290 | (1) |
|
9.5.4.3 The SST k-ω (Menter) Turbulence Model |
|
|
291 | (1) |
|
9.5.4.4 Near-Wall Modifications for Two-Equation Models |
|
|
292 | (3) |
|
9.6 Reynolds Stress Transport (Equation-based) Models (RSTMs) |
|
|
295 | (3) |
|
9.7 Large Eddy Simulation |
|
|
298 | (1) |
|
|
298 | (1) |
|
|
299 | (2) |
|
Chapter 10 Grid Generation |
|
|
301 | (22) |
|
|
301 | (1) |
|
|
301 | (1) |
|
|
301 | (2) |
|
10.4 Classification of Grid Types |
|
|
303 | (1) |
|
10.5 Generating Structured Grids Fitting Complex Boundaries |
|
|
304 | (2) |
|
10.5.1 Blocking Out Cells |
|
|
304 | (1) |
|
10.5.2 Multi-Block Structured Grids |
|
|
305 | (1) |
|
|
305 | (1) |
|
|
306 | (1) |
|
|
307 | (1) |
|
10.8 Grid-Generation Techniques |
|
|
308 | (6) |
|
10.8.1 Coordinate Transformation |
|
|
308 | (2) |
|
|
310 | (1) |
|
10.8.2.1 Algebraic Grid Generation |
|
|
310 | (3) |
|
10.8.2.2 Differential-Equation Based Techniques |
|
|
313 | (1) |
|
10.9 Unstructured Grid Generation |
|
|
314 | (6) |
|
10.9.1 Connectivity Information |
|
|
315 | (1) |
|
10.9.2 Triangular Grid Generation |
|
|
316 | (1) |
|
10.9.2.1 The Advancing-Front Technique |
|
|
317 | (1) |
|
10.9.2.2 The Delaunay-Based Method |
|
|
318 | (2) |
|
|
320 | (3) |
|
Chapter 11 Best Practice Guidelines in CFD |
|
|
323 | (12) |
|
|
323 | (1) |
|
|
323 | (2) |
|
11.2.1 Model Errors and Uncertainties |
|
|
324 | (1) |
|
11.2.2 Discretization or Numerical Errors |
|
|
324 | (1) |
|
11.2.3 Iteration or Convergence Errors |
|
|
324 | (1) |
|
|
325 | (1) |
|
11.2.5 Application Uncertainties |
|
|
325 | (1) |
|
|
325 | (1) |
|
|
325 | (1) |
|
11.3 Best Practices Guidelines |
|
|
325 | (6) |
|
11.3.1 Geometry and Grid Design |
|
|
325 | (1) |
|
11.3.1.1 Geometry Generation |
|
|
325 | (1) |
|
|
326 | (1) |
|
11.3.2 Discretization Schemes |
|
|
326 | (1) |
|
11.3.2.1 Spatial Discretization Errors |
|
|
326 | (1) |
|
11.3.2.2 Time Discretization Errors |
|
|
326 | (1) |
|
|
327 | (1) |
|
11.3.4 Modeling Uncertainty |
|
|
327 | (1) |
|
11.3.4.1 Solution Algorithms |
|
|
327 | (1) |
|
11.3.4.2 Turbulence Modeling |
|
|
328 | (1) |
|
11.3.4.3 Near-Wall Modeling |
|
|
328 | (1) |
|
|
329 | (1) |
|
|
329 | (1) |
|
11.3.6.1 Boundary Conditions |
|
|
329 | (2) |
|
11.4 Analysis of Results, Sensitivity Studies and Uncertainties |
|
|
331 | (1) |
|
11.4.1 Analysis of Results |
|
|
331 | (1) |
|
11.4.2 Sensitivity Analysis |
|
|
331 | (1) |
|
|
331 | (1) |
|
11.5 Verification, Validation and Calibration |
|
|
332 | (3) |
|
|
332 | (1) |
|
11.5.1.1 Code Verification |
|
|
332 | (1) |
|
11.5.1.2 Calculation Verification |
|
|
332 | (1) |
|
|
333 | (2) |
Appendix 1 Area and Volume Calculation |
|
335 | (8) |
Appendix 2 Transformation of Governing Equations to Generalized Curvilinear Coordinates |
|
343 | (6) |
Appendix 3 Review of Vector Calculus |
|
349 | (20) |
Appendix 4 Case Studies |
|
369 | (12) |
References |
|
381 | (6) |
Index |
|
387 | |