Muutke küpsiste eelistusi

Computational Fluid Mechanics and Heat Transfer 3rd New edition [Kõva köide]

(Iowa State University, Ames, USA), (Iowa State University, Ames, USA.)
  • Kõva köide
  • Hind: 199,00 €*
  • * saadame teile pakkumise kasutatud raamatule, mille hind võib erineda kodulehel olevast hinnast
  • See raamat on trükist otsas, kuid me saadame teile pakkumise kasutatud raamatule.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Lisa soovinimekirja
"It is essential that courses evolve as technology advances and new knowledge comes forth. However, not every new twist will have a permanent impact on the discipline. A number of new developments have been included in this edition while preserving the fundamental elements of the discipline covered in earlier editions"--

"Thoroughly updated to include the latest developments in the field, this classic text on finite-difference and finite-volume computational methods maintains the fundamental concepts covered in the first edition. As an introductory text for advanced undergraduates and first-year graduate students, Computational Fluid Mechanics and Heat Transfer, Third Edition provides the background necessary for solving complex problems in fluid mechanics and heat transfer. Divided into two parts, the book first lays the groundwork for the essential concepts preceding the fluids equations in the second part. It includes expanded coverage of turbulence and large-eddy simulation (LES) and additional material included on detached-eddy simulation (DES) and direct numerical simulation (DNS). Designed as a valuable resource for practitioners and students, new homework problems have been added to further enhance the student's understanding of the fundamentals and applications."--

Arvustused

"I have always considered this book the best gift from one generation to the next in computational fluid dynamics. I earnestly recommend this book to graduate students and practicing engineers for the pleasure of learning and a handy reference. The description of the basic concepts and fundamentals is thorough and is crystal clear for understanding. And since 1984, two newer editions have kept abreast to the new, relevant, and fully verified advancements in CFD." Joseph J.S. Shang, Wright State University



"Computational Fluid Mechanics and Heat Transfer is very well written to be used as a textbook for an introductory computational fluid dynamics course, especially for those who want to study computational aerodynamics. Most widely used finite difference and finite volume schemes for various partial differential equations of fluid dynamics and heat transfer are presented in such a way that anyone can read and understand them rather easily. In this sense, this book is also a good textbook for self-learners of CFD. In addition to the fundamental and general topics to be covered in a typical CFD textbook, chapters concerning high-speed aerodynamics in depth are also included, which is very important for computational aerodynamicists." Prof. Seung O. Park, Korea Advanced Institute of Science and Technology

Preface to the Third Edition xiii
Preface to the Second Edition xv
Preface to the First Edition xvii
Authors xix
PART I Fundamentals
Chapter 1 Introduction
3(10)
1.1 General Remarks
3(2)
1.2 Comparison of Experimental, Theoretical, and Computational Approaches
5(4)
1.3 Historical Perspective
9(4)
Chapter 2 Partial Differential Equations
13(30)
2.1 Introduction
13(1)
2.1.1 Partial Differential Equations
13(1)
2.2 Physical Classification
14(6)
2.2.1 Equilibrium Problems
14(3)
2.2.2 Eigenvalue Problems
17(1)
2.2.3 Marching Problems
17(3)
2.3 Mathematical Classification
20(10)
2.3.1 Hyperbolic PDEs
23(4)
2.3.2 Parabolic PDEs
27(2)
2.3.3 Elliptic PDEs
29(1)
2.4 Well-Posed Problem
30(2)
2.5 Systems of Partial Differential Equations
32(5)
2.6 Other PDEs of Interest
37(6)
Problems
38(5)
Chapter 3 Basics of Discretization Methods
43(60)
3.1 Introduction
43(1)
3.2 Finite Differences
43(7)
3.3 Difference Representation of Partial Differential Equations
50(6)
3.3.1 Truncation Error
50(1)
3.3.2 Round-Off and Discretization Errors
51(1)
3.3.3 Consistency
52(1)
3.3.4 Stability
52(1)
3.3.5 Convergence for Marching Problems
53(1)
3.3.6 Comment on Equilibrium Problems
53(1)
3.3.7 Conservation Form and Conservative Property
54(2)
3.4 Further Examples of Methods for Obtaining Finite-Difference Equations
56(10)
3.4.1 Use of Taylor Series
56(4)
3.4.2 Use of Polynomial Fitting
60(4)
3.4.3 Integral Method
64(2)
3.5 Finite-Volume Method
66(10)
3.6 Introduction to the Use of Irregular Meshes
76(6)
3.6.1 Irregular Mesh due to Shape of a Boundary
76(5)
3.6.2 Irregular Mesh Not Caused by Shape of a Boundary
81(1)
3.6.3 Concluding Remarks
82(1)
3.7 Stability Considerations
82(21)
3.7.1 Fourier or von Neumann Analysis
83(7)
3.7.2 Stability Analysis for Systems of Equations
90(5)
Problems
95(8)
Chapter 4 Application of Numerical Methods to Selected Model Equations
103(144)
4.1 Wave Equation
103(23)
4.1.1 Euler Explicit Methods
104(1)
4.1.2 Upstream (First-Order Upwind or Windward) Differencing Method
104(9)
4.1.3 Lax Method
113(1)
4.1.4 Euler Implicit Method
114(2)
4.1.5 Leap Frog Method
116(1)
4.1.6 Lax-Wendroff Method
117(2)
4.1.7 Two-Step Lax-Wendroff Method
119(1)
4.1.8 MacCormack Method
119(1)
4.1.9 Second-Order Upwind Method
120(1)
4.1.10 Time-Centered Implicit Method (Trapezoidal Differencing Method)
121(1)
4.1.11 Rusanov (Burstein-Mirin) Method
122(2)
4.1.12 Warming-Kutler-Lomax Method
124(1)
4.1.13 Runge-Kutta Methods
124(2)
4.1.14 Additional Comments
126(1)
4.2 Heat Equation
126(18)
4.2.1 Simple Explicit Method
127(3)
4.2.2 Richardson's Method
130(1)
4.2.3 Simple Implicit (Laasonen) Method
130(1)
4.2.4 Crank-Nicolson Method
131(1)
4.2.5 Combined Method A
131(1)
4.2.6 Combined Method B
132(1)
4.2.7 DuFort-Frankel Method
133(1)
4.2.8 Keller Box and Modified Box Methods
133(4)
4.2.9 Methods for the Two-Dimensional Heat Equation
137(2)
4.2.10 ADI Methods
139(2)
4.2.11 Splitting or Fractional-Step Methods
141(1)
4.2.12 ADE Methods
142(1)
4.2.13 Hopscotch Method
143(1)
4.2.14 Additional Comments
144(1)
4.3 Laplace's Equation
144(31)
4.3.1 Finite-Difference Representations for Laplace's Equation
144(1)
4.3.1.1 Five-Point Formula
144(1)
4.3.1.2 Nine-Point Formula
145(1)
4.3.1.3 Residual Form of the Difference Equations
145(1)
4.3.2 Simple Example for Laplace's Equation
146(1)
4.3.3 Direct Methods for Solving Systems of Linear Algebraic Equations
147(1)
4.3.3.1 Cramer's Rule
147(1)
4.3.3.2 Gaussian Elimination
148(2)
4.3.3.3 Thomas Algorithm
150(1)
4.3.3.4 Advanced Direct Methods
151(1)
4.3.4 Iterative Methods for Solving Systems of Linear Algebraic Equations
152(1)
4.3.4.1 Gauss-Seidel Iteration
152(2)
4.3.4.2 Sufficient Condition for Convergence of the Gauss-Seidel Procedure
154(1)
4.3.4.3 Successive Overrelaxation
155(1)
4.3.4.4 Coloring Schemes
156(2)
4.3.4.5 Block-Iterative Methods
158(1)
4.3.4.6 SOR by Lines
158(1)
4.3.4.7 ADI Methods
159(2)
4.3.4.8 Strongly Implicit Methods
161(1)
4.3.4.9 Krylov Subspace Methods
162(4)
4.3.5 Multigrid Method
166(4)
4.3.5.1 Example Using Multigrid
170(3)
4.3.5.2 Multigrid for Nonlinear Equations
173(2)
4.4 Burgers' Equation (Inviscid)
175(38)
4.4.1 Lax Method
179(3)
4.4.2 Lax-Wendroff Method
182(2)
4.4.3 MacCormack Method
184(1)
4.4.4 Rusanov (Burstein-Mirin) Method
185(1)
4.4.5 Warming-Kutler-Lomax Method
186(2)
4.4.6 Tuned Third-Order Methods
188(1)
4.4.7 Implicit Methods
189(3)
4.4.8 Godunov Scheme
192(2)
4.4.9 Roe Scheme
194(4)
4.4.10 Enquist-Osher Scheme
198(2)
4.4.11 Higher-Order Upwind Schemes
200(3)
4.4.12 TVD Schemes
203(10)
4.5 Burgers' Equation (Viscous)
213(17)
4.5.1 FTCS Method
216(5)
4.5.2 Leap Frog/DuFort-Frankel Method
221(1)
4.5.3 Brailovskaya Method
221(1)
4.5.4 Allen-Cheng Method
222(1)
4.5.5 Lax-Wendroff Method
223(1)
4.5.6 MacCormack Method
223(1)
4.5.7 Briley-McDonald Method
224(2)
4.5.8 Time-Split MacCormack Method
226(1)
4.5.9 ADI Methods
227(1)
4.5.10 Predictor-Corrector, Multiple-Iteration Method
228(1)
4.5.11 Roe Method
229(1)
4.6 Concluding Remarks
230(17)
Problems
230(17)
PART II Application of Numerical Methods to the Equations of Fluid Mechanics and Heat Transfer
Chapter 5 Governing Equations of Fluid Mechanics and Heat Transfer
247(102)
5.1 Fundamental Equations
247(23)
5.1.1 Continuity Equation
248(1)
5.1.2 Momentum Equation
249(3)
5.1.3 Energy Equation
252(2)
5.1.4 Equation of State
254(2)
5.1.5 Chemically Reacting Flows
256(4)
5.1.6 Magnetohydrodynamic Flows
260(2)
5.1.7 Vector Form of Equations
262(1)
5.1.8 Nondimensional Form of Equations
263(3)
5.1.9 Orthogonal Curvilinear Coordinates
266(4)
5.2 Averaged Equations for Turbulent Flows
270(12)
5.2.1 Background
270(2)
5.2.2 Reynolds Averaged Navier-Stokes Equations
272(1)
5.2.3 Reynolds Form of the Continuity Equation
273(1)
5.2.4 Reynolds Form of the Momentum Equations
274(2)
5.2.5 Reynolds Form of the Energy Equation
276(2)
5.2.6 Comments on the Reynolds Equations
278(2)
5.2.7 Filtered Navier-Stokes Equations for Large-Eddy Simulation
280(2)
5.3 Boundary-Layer Equations
282(12)
5.3.1 Background
282(1)
5.3.2 Boundary-Layer Approximation for Steady Incompressible Flow
283(8)
5.3.3 Boundary-Layer Equations for Compressible Flow
291(3)
5.4 Introduction to Turbulence Modeling
294(21)
5.4.1 Background
294(1)
5.4.2 Modeling Terminology
295(1)
5.4.3 Simple Algebraic or Zero-Equation Models
296(6)
5.4.4 One-Half-Equation Models
302(2)
5.4.5 One-Equation Models
304(2)
5.4.6 One-and-One-Half- and Two-Equation Models
306(3)
5.4.7 Reynolds Stress Models
309(4)
5.4.8 Subgrid-Scale Models for Large-Eddy Simulation
313(1)
5.4.9 Comments on the Implementation of DES
314(1)
5.4.10 Closing Comment on Turbulence Modeling
314(1)
5.5 Euler Equations
315(14)
5.5.1 Continuity Equation
315(1)
5.5.2 Inviscid Momentum Equations
316(3)
5.5.3 Inviscid Energy Equations
319(1)
5.5.4 Additional Equations
320(3)
5.5.5 Vector Form of Euler Equations
323(1)
5.5.6 Quasi-One-Dimensional Form of the Euler Equations
323(1)
5.5.6.1 Conservation of Mass
323(1)
5.5.6.2 Conservation of Momentum
324(1)
5.5.6.3 Conservation of Energy
324(1)
5.5.7 Simplified Forms of Euler Equations
325(2)
5.5.8 Shock Equations
327(2)
5.6 Transformation of Governing Equations
329(8)
5.6.1 Simple Transformations
329(5)
5.6.2 Generalized Transformation
334(3)
5.7 Finite-Volume Formulation
337(12)
5.7.1 Two-Dimensional Finite-Volume Method
338(4)
5.7.2 Three-Dimensional Finite-Volume Method
342(1)
Problems
343(6)
Chapter 6 Numerical Methods for Inviscid Flow Equations
349(84)
6.1 Introduction
349(1)
6.2 Method of Characteristics
349(13)
6.2.1 Linear Systems of Equations
350(8)
6.2.2 Nonlinear Systems of Equations
358(4)
6.3 Classical Shock-Capturing Methods
362(11)
6.4 Flux Splitting Schemes
373(11)
6.4.1 Steger-Warming Splitting
374(5)
6.4.2 Van Leer Flux Splitting
379(1)
6.4.3 Other Flux Splitting Schemes
380(2)
6.4.4 Application for Arbitrarily Shaped Cells
382(2)
6.5 Flux-Difference Splitting Schemes
384(10)
6.5.1 Roe Scheme
385(6)
6.5.2 Second-Order Schemes
391(3)
6.6 Multidimensional Case in a General Coordinate System
394(4)
6.7 Boundary Conditions for the Euler Equations
398(9)
6.8 Methods for Solving the Potential Equation
407(13)
6.8.1 Treatment of the Time Derivatives
413(1)
6.8.2 Spatial Derivatives
414(6)
6.9 Transonic Small-Disturbance Equations
420(3)
6.10 Methods for Solving Laplace's Equation
423(10)
Problems
428(5)
Chapter 7 Numerical Methods for Boundary-Layer-Type Equations
433(80)
7.1 Introduction
433(1)
7.2 Brief Comparison of Prediction Methods
433(1)
7.3 Finite-Difference Methods for Two-Dimensional or Axisymmetric
Steady External Flows
434(1)
7.3.1 Generalized Form of the Equations
434(2)
7.3.2 Example of a Simple Explicit Procedure
436(1)
7.3.2.1 Alternative Formulation for Explicit Method
437(1)
7.3.3 Crank-Nicolson and Fully Implicit Methods
438(2)
7.3.3.1 Lagging the Coefficients
440(1)
7.3.3.2 Simple Iterative Update of Coefficients
440(1)
7.3.3.3 Use of Newton Linearization to Iteratively Update Coefficients
440(2)
7.3.3.4 Newton Linearization with Coupling
442(2)
7.3.3.5 Extrapolating the Coefficients
444(1)
7.3.3.6 Recommendation
445(1)
7.3.3.7 Warning on Stability
445(3)
7.3.3.8 Closing Comment on Crank-Nicolson and Fully Implicit Methods
448(1)
7.3.4 DuFort-Frankel Method
448(2)
7.3.5 Box Method
450(3)
7.3.6 Other Methods
453(1)
7.3.7 Coordinate Transformations for Boundary Layers
453(1)
7.3.7.1 Analytical Transformation Approach
454(1)
7.3.7.2 Generalized Coordinate Approach
455(2)
7.3.8 Special Considerations for Turbulent Flows
457(1)
7.3.8.1 Use of Wall Functions
457(1)
7.3.8.2 Use of Unequal Grid Spacing
458(1)
7.3.8.3 Use of Coordinate Transformations
459(1)
7.3.9 Example Applications
459(2)
7.3.10 Closure
461(2)
7.4 Inverse Methods, Separated Flows, and Viscous-Inviscid Interaction
463(15)
7.4.1 Introduction
463(1)
7.4.2 Comments on Computing Separated Flows Using the Boundary-Layer Equations
464(2)
7.4.3 Inverse Finite-Difference Methods
466(1)
7.4.3.1 Inverse Method A
466(2)
7.4.3.2 Inverse Method B
468(4)
7.4.4 Viscous-Inviscid Interaction
472(6)
7.5 Methods for Internal Flows
478(10)
7.5.1 Introduction
478(1)
7.5.2 Coordinate Transformation for Internal Flows
479(1)
7.5.3 Computational Strategies for Internal Flows
480(2)
7.5.3.1 Variable Secant Iteration
482(1)
7.5.3.2 Lagging the Pressure Adjustment
483(1)
7.5.3.3 Newton's Method
483(1)
7.5.3.4 Treating the Pressure Gradient as a Dependent Variable
484(3)
7.5.4 Additional Remarks
487(1)
7.6 Application to Free-Shear Flows
488(3)
7.7 Three-Dimensional Boundary Layers
491(15)
7.7.1 Introduction
491(1)
7.7.2 Equations
492(5)
7.7.3 Comments on Solution Methods for Three-Dimensional Flows
497(2)
7.7.3.1 Crank-Nicolson Scheme
499(1)
7.7.3.2 Krause Zigzag Scheme
500(2)
7.7.3.3 Some Variations
502(1)
7.7.3.4 Inverse Methods and Viscous-Inviscid Interaction
503(1)
7.7.4 Example Calculations
504(1)
7.7.5 Additional Remarks
505(1)
7.8 Unsteady Boundary Layers
506(7)
Problems
507(6)
Chapter 8 Numerical Methods for the "Parabolized" Navier-Stokes Equations
513(76)
8.1 Introduction
513(3)
8.2 Thin-Layer Navier-Stokes Equations
516(3)
8.3 "Parabolized" Navier-Stokes Equations
519(37)
8.3.1 Derivation of PNS Equations
520(8)
8.3.2 Streamwise Pressure Gradient
528(5)
8.3.2.1 Iterative PNS Methods
533(1)
8.3.2.2 Detecting Upstream Influence Regions
534(1)
8.3.3 Numerical Solution of PNS Equations
535(1)
8.3.3.1 Early Schemes
535(1)
8.3.3.2 Beam-Warming Scheme
536(10)
8.3.3.3 Roe Scheme
546(7)
8.3.3.4 Other Schemes
553(1)
8.3.3.5 Advanced Schemes
553(1)
8.3.4 Applications of PNS Equations
554(2)
8.4 Parabolized and Partially Parabolized Navier-Stokes Procedures for Subsonic Flows
556(21)
8.4.1 Fully Parabolic Procedures
556(6)
8.4.2 Parabolic Procedures for 3-D Free-Shear and Other Flows
562(1)
8.4.3 Partially Parabolized (Multiple Space-Marching) Model
562(1)
8.4.3.1 Pressure-Correction PPNS Schemes
563(9)
8.4.3.2 Coupled PPNS Schemes
572(5)
8.5 Viscous Shock-Layer Equations
577(3)
8.6 "Conical" Navier-Stokes Equations
580(9)
Problems
584(5)
Chapter 9 Numerical Methods for the Navier-Stokes Equations
589(60)
9.1 Introduction
589(1)
9.2 Compressible Navier-Stokes Equations
590(30)
9.2.1 Explicit MacCormack Method
593(6)
9.2.2 Other Explicit Methods
599(3)
9.2.3 Beam-Warming Scheme
602(7)
9.2.4 Other Implicit Methods
609(4)
9.2.5 Upwind Methods
613(1)
9.2.6 Compressible Navier-Stokes Equations at Low Speeds
614(6)
9.3 Incompressible Navier-Stokes Equations
620(29)
9.3.1 Vorticity-Stream Function Approach
621(9)
9.3.2 Primitive-Variable Approach
630(1)
9.3.2.1 General
630(2)
9.3.2.2 Coupled Approach: The Method of Artificial Compressibility
632(4)
9.3.2.3 Coupled Approach: Space Marching
636(1)
9.3.2.4 Pressure-Correction Approach: General
637(1)
9.3.2.5 Pressure-Correction Approach: Marker-and-Cell Method
638(2)
9.3.2.6 Pressure-Correction Approach: Projection (Fractional-Step) Methods
640(1)
9.3.2.7 Pressure-Correction Approach: SIMPLE Family of Methods
641(3)
9.3.2.8 Pressure-Correction Approach: SIMPLE on Nonstaggered Grids
644(1)
9.3.2.9 Pressure-Correction Approach: Pressure-Implicit with Splitting of Operators (PISO) Method
645(1)
Problems
646(3)
Chapter 10 Grid Generation
649(34)
10.1 Introduction
649(2)
10.2 Algebraic Methods
651(7)
10.3 Differential Equation Methods
658(11)
10.3.1 Elliptic Schemes
658(5)
10.3.2 Hyperbolic Schemes
663(2)
10.3.3 Parabolic Schemes
665(2)
10.3.4 Deformation Method
667(2)
10.4 Variational Methods
669(1)
10.5 Unstructured Grid Schemes
670(6)
10.5.1 Connectivity Information
671(2)
10.5.2 Delaunay Triangulation
673(1)
10.5.3 Bowyer Algorithm
674(2)
10.6 Other Approaches
676(2)
10.7 Adaptive Grids
678(5)
Problems
679(4)
Appendix A Subroutine for Solving a Tridiagonal System of Equations 683(2)
Appendix B Subroutines for Solving Block Tridiagonal Systems of Equations 685(8)
Appendix C Modified Strongly Implicit Procedure 693(6)
Nomenclature 699(6)
References 705(36)
Index 741