Muutke küpsiste eelistusi

Computational Wave Dynamics [Kõva köide]

(Tokyo Univ Of Marine Science And Tech, Japan), (Hokkaido Univ, Japan), (Kyoto Univ, Japan)
  • Formaat: Hardback, 252 pages
  • Sari: Advanced Series On Ocean Engineering 37
  • Ilmumisaeg: 31-Jul-2013
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • ISBN-10: 9814449709
  • ISBN-13: 9789814449700
Teised raamatud teemal:
  • Formaat: Hardback, 252 pages
  • Sari: Advanced Series On Ocean Engineering 37
  • Ilmumisaeg: 31-Jul-2013
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • ISBN-10: 9814449709
  • ISBN-13: 9789814449700
Teised raamatud teemal:
Japanese engineering scholars set out the various methods of calculating the dynamics of ocean waves mathematically, providing students and new researchers with step-by-step instructions for preparing and reviewing the relevant areas of computational wave dynamics and computational fluid mechanics. They cover governing equations, turbulence models, fundamental computational methods, the volume of fluid method, the combined unified procedure method, the particle method, the distinct element method, the Euler-Lagrange method, and computational wave dynamics for coastal and ocean research. Annotation ©2013 Book News, Inc., Portland, OR (booknews.com)

This book provides a comprehensive description of the latest theory-supported numerical technologies, as well as scientific and engineering applications for water surface waves. Its contents are crafted to cater to a step-by-step learning of computational wave dynamics and ocean wave modeling. It provides a comprehensive description from underlying theories of free-surface flows, to practical computational applications for coastal and ocean engineering on the basis of computational fluid dynamics (CFD).The text may be used as a textbook for advanced undergraduate students and graduate students to understand the theoretical background of wave computations, and the recent progress of computational techniques for free-surface and interfacial flows, such as Volume of Fluid (VOF), Constrained Interpolation Profile (CIP), Lagrangian Particle (SPH, MPS), Distinct Element (DEM) and Euler-Lagrange Hybrid Methods.It is also suitable for researchers and engineers who wish to apply CFD techniques to ocean modeling and practical coastal problems involving sediment transport, wave-structure interaction and surf zone flows.
Preface v
List of Editors and Contributors
ix
1 Governing Equations
1(14)
H. Gotoh
A. Okayasu
1.1 Governing Equations for Viscous Fluids
1(5)
1.1.1 Equation of continuity
1(1)
1.1.2 Momentum equation
2(1)
1.1.3 Constitution equation and the Navier-Stokes equation
3(2)
1.1.4 Indicial notation
5(1)
1.2 Governing Equation for Multiphase Flow
6(1)
1.3 Governing Equation of Waves
7(8)
1.3.1 Potential theory
7(1)
1.3.2 Conventional models for wave transformation analysis
8(2)
1.3.3 Boussinesq models
10(4)
References
14(1)
2 Turbulence Model
15(30)
N. Mori
Y. Watanabe
T. Suzuki
A. Okayasu
2.1 Nearshore Wave Fields and Turbulence
15(3)
2.1.1 Definition of turbulence in wave fields
15(2)
2.1.2 Overviews of turbulence models in numerical wave flumes
17(1)
2.2 Reynolds Averaged Model
18(7)
2.2.1 Basic concept
18(3)
2.2.2 Reynolds stress and turbulence energy
21(1)
2.2.3 Turbulence in the RANS model
22(3)
2.3 Large Eddy Simulation
25(13)
2.3.1 Basic concept
25(1)
2.3.2 Filtering operation
26(4)
2.3.3 Leonard's decomposition
30(2)
2.3.4 Smagorinsky model
32(3)
2.3.5 One-equation model
35(1)
2.3.6 Dynamic model
36(2)
2.4 Applications of Turbulence Models in the Surf Zone
38(7)
References
43(2)
3 Fundamental Computational Methods
45(30)
Y. Watanabe
N. Mori
3.1 Discretization for Finite Differences
45(7)
3.2 Boundary Conditions
52(12)
3.2.1 Bottom and wall conditions
53(6)
3.2.2 In-flow conditions
59(3)
3.2.3 Open boundary
62(2)
3.3 Solution and Procedures for the Pressure Equation
64(11)
3.3.1 Matrix solvers
65(7)
3.3.2 Example of solving matrix
72(1)
References
73(2)
4 VOF Method
75(26)
K. Kawasaki
4.1 Interface Capturing Method
75(2)
4.1.1 Height function method
75(2)
4.1.2 Line segment method
77(1)
4.1.3 Maker particle method
77(1)
4.1.4 VOF method
77(1)
4.2 VOF Method
77(7)
4.2.1 Concept of the VOF method
77(2)
4.2.2 Classification of a cell
79(1)
4.2.3 Donor-acceptor method
80(4)
4.2.4 Free surface boundary condition
84(1)
4.3 Numerical Wave Flume Cadmas-Surf
84(9)
4.3.1 Concepts of Cadmas-Surf
85(1)
4.3.2 Governing equation
85(5)
4.3.3 Wave generation model
90(1)
4.3.4 Open boundary treatment
91(2)
4.4 Application of the VOF Method
93(8)
4.4.1 Verification of a numerical wave flume
93(2)
4.4.2 Wave breaking on a slope
95(2)
4.4.3 Wave and structure interaction
97(1)
References
98(3)
5 CIP Method
101(36)
Y. Watanabe
5.1 Outline of the CIP Method
101(10)
5.1.1 Two-dimensional interpolation
103(5)
5.1.2 Three-dimensional interpolation
108(3)
5.2 Computational Procedure for the Momentum Equation
111(3)
5.3 Extension of the CIP
114(3)
5.3.1 CIP Combined, Unified Procedure (CCUP)
114(2)
5.3.2 CIP-Conservative semi-Lagrangian Scheme (CLS)
116(1)
5.4 Computation of Free-Surfaces and Interfaces
117(10)
5.4.1 Definition of surfaces
119(1)
5.4.2 Mechanical balance at surfaces
120(7)
5.5 Numerical Wave Flume Based on the CIP Method
127(10)
References
134(3)
6 Particle Method
137(44)
H. Gotoh
6.1 Concept of the Particle Method
137(2)
6.2 Discretization of Governing Equations
139(8)
6.2.1 Integral interpolants of the SPH method
139(4)
6.2.2 Vector differential operators of the SPH method
143(2)
6.2.3 Integral interpolants and vector differential operators of the MPS method
145(2)
6.3 Algorithms of Particle Methods
147(7)
6.3.1 The WCSPH method (fully explicit algorithm)
148(1)
6.3.2 The MPS method (semi-implicit algorithm)
149(2)
6.3.3 Boundary conditions
151(1)
6.3.4 Neighboring particle search
152(2)
6.4 Sub-Particle Scale Turbulence Model
154(2)
6.5 Accurate Particle Methods
156(16)
6.5.1 Improvements with momentum conservation
156(2)
6.5.2 Control of pressure fluctuations
158(10)
6.5.3 Other improvements
168(4)
6.6 Applications
172(9)
6.6.1 Wave breaking and overtopping
172(2)
6.6.2 Multiphase flow
174(2)
6.6.3 Floating bodies
176(1)
References
176(5)
7 Distinct Element Method
181(14)
E. Harada
H. Gotoh
7.1 Computing Method
181(7)
7.1.1 Governing equations
181(3)
7.1.2 Coordinate transformation
184(2)
7.1.3 Tuning model parameters
186(2)
7.2 DEM-based Armor Block Model
188(7)
7.2.1 Rigid body motion
188(3)
7.2.2 Tracking armor blocks under high waves
191(1)
References
192(3)
8 Euler-Lagrange Hybrid Method
195(18)
H. Mutsuda
8.1 Introduction
195(1)
8.2 Numerical Methods
196(5)
8.2.1 Computation of free-surface particles
197(2)
8.2.2 Computation of solid particles
199(2)
8.3 Applications of the Hybrid Model
201(12)
8.3.1 Numerical test
201(3)
8.3.2 Interfacial flows with solid structures
204(5)
References
209(4)
9 Computational Wave Dynamics for Coastal and Ocean Research
213(14)
Y. Watanabe
N. Mori
H. Gotoh
A. Okayasu
9.1 Sediment Transport
213(3)
9.2 Wave-Structure Interaction
216(5)
9.3 Coastal Disasters, Wave Climates, and Ocean Modeling
221(6)
References
225(2)
Acronyms List 227(4)
Index 231