Foreword |
|
ix | |
Preface |
|
xi | |
Acknowledgments |
|
xiii | |
|
Chapter 1 An Overview of Applied Control Engineering |
|
|
1 | (12) |
|
|
1 | (1) |
|
1.2 Computer-Aided Control System Design |
|
|
2 | (2) |
|
1.3 Control System Fundamentals |
|
|
4 | (4) |
|
|
6 | (1) |
|
1.3.2 Closed-Loop Systems |
|
|
7 | (1) |
|
1.4 Examples of Control Systems |
|
|
8 | (2) |
|
1.4.1 Ship Control System |
|
|
8 | (1) |
|
1.4.2 Underwater Robotic Vehicle Control System |
|
|
8 | (1) |
|
1.4.3 Unmanned Aerial Vehicle Control System |
|
|
9 | (1) |
|
1.5 Control System Design |
|
|
10 | (3) |
|
Chapter 2 Introduction to MATLAB and Simulink |
|
|
13 | (38) |
|
2.1 What Is MATLAB and Simulink? |
|
|
13 | (1) |
|
|
13 | (7) |
|
|
13 | (2) |
|
|
15 | (2) |
|
|
17 | (1) |
|
|
17 | (2) |
|
2.2.5 M-Files and Function |
|
|
19 | (1) |
|
2.3 Solving a Differential Equation |
|
|
20 | (25) |
|
2.3.1 MATLAB Open-Loop Transfer Function Modeling |
|
|
22 | (3) |
|
2.3.2 Simulink Open-Loop Transfer Function Modeling |
|
|
25 | (4) |
|
2.3.3 Simulink Open-Loop System Modeling |
|
|
29 | (16) |
|
2.4 Simulink Closed-Loop Control System Design |
|
|
45 | (6) |
|
2.4.1 PID Tuning Using Simulink |
|
|
45 | (2) |
|
2.4.2 PID Tuning Using the SISO Tool |
|
|
47 | (4) |
|
Chapter 3 Analysis and Control of the ALSTOM Gasifier Problem |
|
|
51 | (74) |
|
3.1 Gasifier System Description and Notation |
|
|
51 | (1) |
|
3.2 Inherent Properties Analysis |
|
|
52 | (9) |
|
3.3 Control Structure Design |
|
|
61 | (3) |
|
3.4 Gasifier System Analysis |
|
|
64 | (8) |
|
3.5 Model Order Reduction (MOR) |
|
|
72 | (5) |
|
3.6 Linear Quadratic Regulator (LQR) |
|
|
77 | (6) |
|
|
77 | (4) |
|
|
81 | (1) |
|
3.6.3 Performance Tests on LQR Design |
|
|
81 | (2) |
|
3.7 Linear Quadratic Gaussian (LQG) |
|
|
83 | (4) |
|
|
83 | (1) |
|
3.7.2 Loop Transfer Recovery (LTR) |
|
|
84 | (2) |
|
3.7.3 LQG/LTR Design Steps |
|
|
86 | (1) |
|
3.7.4 Performance Tests on LQG/LTR |
|
|
87 | (1) |
|
3.8 H-Infinity Optimization |
|
|
87 | (18) |
|
|
89 | (1) |
|
3.8.2 H-Infinity Design Assumptions |
|
|
90 | (1) |
|
3.8.3 H∞ Optimization Routine |
|
|
91 | (1) |
|
3.8.4 Mixed Sensitivity Problem Formulation |
|
|
91 | (2) |
|
3.8.5 Selection of Weighting Function |
|
|
93 | (2) |
|
3.8.6 H-Infinity Design Steps |
|
|
95 | (10) |
|
3.8.7 Performance Tests on H-Infinity Design |
|
|
105 | (1) |
|
|
105 | (11) |
|
|
107 | (9) |
|
3.9.2 Performance Tests on H2 Design |
|
|
116 | (1) |
|
3.10 Comparison of Controllers |
|
|
116 | (4) |
|
|
116 | (1) |
|
3.10.2 Robust Stability (RS) |
|
|
117 | (1) |
|
3.10.3 MIMO System Asymptotic Stability (MIMO AS) |
|
|
117 | (1) |
|
3.10.4 Nyquist Type Criterion (NTC) |
|
|
118 | (1) |
|
3.10.5 Internal Stability (IS) |
|
|
118 | (1) |
|
3.10.6 Instantaneous Error (ISE) |
|
|
119 | (1) |
|
3.10.7 Final Value Theorem (FVT) |
|
|
119 | (1) |
|
3.10.8 Controller Order (CO) |
|
|
120 | (1) |
|
3.10.9 Condition Number (CN) |
|
|
120 | (1) |
|
3.11 Comparison of All Controllers |
|
|
120 | (5) |
|
Chapter 4 Modeling of a Remotely Operated Vehicle |
|
|
125 | (76) |
|
4.1 Background of the URV |
|
|
125 | (1) |
|
4.2 Basic Design of a ROV and Tasks Undertaken |
|
|
126 | (3) |
|
|
129 | (1) |
|
4.4 Dynamic Equation Using the Newtonian Method |
|
|
130 | (5) |
|
4.5 Kinematics Equations and Earth-Fixed Frame Equation |
|
|
135 | (3) |
|
|
138 | (48) |
|
4.6.1 Rigid-Body Mass and Coriolis and Centripetal Matrix |
|
|
139 | (2) |
|
4.6.2 Hydrodynamic Added Mass Forces |
|
|
141 | (13) |
|
4.6.3 Hydrodynamic Damping Forces |
|
|
154 | (24) |
|
4.6.4 Buoyancy and Gravitational Forces |
|
|
178 | (4) |
|
4.6.5 Thruster's Configuration Model |
|
|
182 | (4) |
|
4.7 Perturbed RRC ROV Model |
|
|
186 | (4) |
|
4.7.1 Perturbation Bound on M and C Matrix |
|
|
188 | (2) |
|
4.7.2 Perturbation Bound on D Matrix |
|
|
190 | (1) |
|
4.8 Verification of ROV Model |
|
|
190 | (11) |
|
Chapter 5 Control of a Remotely Operated Vehicle |
|
|
201 | (76) |
|
5.1 Nonlinear ROV Subsystem Model |
|
|
201 | (10) |
|
5.1.1 Station-Keeping Model |
|
|
202 | (3) |
|
5.1.2 Horizontal and Vertical Plane Subsystem Models |
|
|
205 | (6) |
|
5.2 Linear ROV Subsystem Model |
|
|
211 | (4) |
|
5.3 Nonlinear ROV Control Systems Design |
|
|
215 | (40) |
|
5.3.1 Multivariable PID Control Design |
|
|
215 | (14) |
|
5.3.2 Sliding-Mode Control |
|
|
229 | (5) |
|
5.3.3 Velocity State-Feedback Linearization |
|
|
234 | (5) |
|
5.3.4 Fuzzy Logic Control |
|
|
239 | (11) |
|
5.3.5 Cascaded System Control on the Reduced ROV Model |
|
|
250 | (5) |
|
5.4 Linear ROV Control Systems Design |
|
|
255 | (22) |
|
5.4.1 Inherent Properties of Linear ROV System |
|
|
256 | (8) |
|
5.4.2 LQG/LTR Controller Design |
|
|
264 | (3) |
|
5.4.3 H-Infinity Controller Design |
|
|
267 | (10) |
References |
|
277 | (4) |
Appendix A1 State-Space Matrices for ALSTOM Gasifier System (Linear) |
|
281 | (16) |
Appendix A2 LQR Simulation Model and Results |
|
297 | (12) |
Appendix A3 LQG Simulation Model |
|
309 | (12) |
Appendix A4 LQG/LTR Simulation Model and Results |
|
321 | (12) |
Appendix A5 H2 Simulation Model and Results |
|
333 | (12) |
Appendix A6 H∞ Simulation Model and Results |
|
345 | (12) |
Index |
|
357 | |