Part I Introduction Microwave Circuits and Computer-Aided Design 3(22) Evolution of Microwave Circuits 3(5) Computer-Aided Design Approach 8(6) Outline of the Book 14(11) References 19(6) Microwave Network Representation 25(22) ABCD Parameters 26(4) Scattering Parameters 30(6) Definition and General Properties 30(3) Relationship with Other Representations 33(3) Transfer Scattering Matrix Representation 36(11) Appendix 2.1 ABCD, S-and T-Matrices for Some of the Commonly Used Two-Ports 39(4) References 43(4) Part II Modelling of Circuit Elements Characterization of Transmission Structures 47(44) Coaxial Lines 49(4) Waveguides 53(4) Rectangular Waveguides 53(2) Circular Waveguides 55(2) Striplines 57(3) Microstrip Lines 60(5) Slotlines 65(2) Coplanar Lines 67(5) Coupled Striplines 72(4) Coupled Microstrip Lines 76(15) References 85(6) Sensitivities of Transmission Structures 91(38) Introduction 91(4) Definitions 91(1) Applications of Sensitivity Analysis 92(1) Tolerance Analysis of Transmission Lines 93(2) Coaxial Lines 95(2) Waveguides 97(3) Striplines and Microstrip Lines 100(6) Striplines 100(2) Microstrip Lines 102(4) Slotlines and Coplanar Lines 106(11) Slotlines 106(6) Coplanar Lines 112(5) Coupled Striplines and Coupled Microstrip Lines 117(12) Coupled Striplines 117(3) Coupled Microstrip Lines 120(6) References 126(3) Characterization of Discontinuities-I Coaxial Lines and Waveguides 129(50) Introduction 129(2) Coaxial Line Discontinuities 131(8) Capacitive Gaps in Coaxial Lines 131(4) Steps in Coaxial Lines 135(1) Capacitive Windows in Coaxial Lines 136(3) T-Junction or Stub in Coaxial Lines 139(1) Rectangular Waveguide Discontinuities 139(40) Posts in a Waveguide 139(10) Strips in Waveguides 149(3) Diaphragms or Windows in Waveguides 152(7) Steps in Waveguides 159(7) Right-Angled Bends or Corners in Waveguides 166(3) T-junctions 169(4) Circular and Elliptical Apertures in Waveguides 173(4) References 177(2) Characterization of Discontinuities -II Striplines and Microstrip Lines 179(26) Stripline Discontinuities 181(8) Open-End 183(1) Round-Hole 184(1) Gap 185(1) Step in Width 186(1) Bend 186(2) T-junction 188(1) Microstrip Discontinuities 189(16) Open-End 190(1) Gap 191(1) Notch 192(1) Step in Width 192(3) Right-angled Bend 195(1) T-junction 195(2) Cross-junction 197(3) References 200(5) Lumped Elements in Microwave Circuits 205(24) Basic Considerations 205(1) Design of Lumped Elements 206(14) Resistors and Inductors 207(6) Capacitors 213(7) Measurements of Lumped Element Parameters 220(9) References 226(3) Two-Dimensional Planar Components 229(34) Basic Concepts 231(6) Greens Function Approach 237(5) Evaluation of Greens Functions 242(9) Method of Images 243(1) Expansion of Greens Function in Eigenfunctions 244(3) Greens Functions for Various Configurations 247(4) Segmentation and Desegmentation 251(2) Numerical Methods for Arbitrary Shapes 253(3) Scaling for Planar Circuits 256(7) Frequency Scaling 257(1) Impedance Scaling 257(1) Designs of Stripline Type Circuits from a Microstrip Type Planar Circuit (and Vice Versa) 257(2) References 259(4) Models for Microwave Semiconductor Devices 263(32) Schottky-Barrier and Point-Contact Diodes 264(3) Varactor Diodes 267(1) Pin Diodes 268(1) Bipolar Transistors and Mesfets 269(16) Bipolar Transistors 269(8) Mesfets 277(8) Gunn and Impatt Diodes 285(10) Gunn Diodes 285(4) Impatt Diodes 289(4) References 293(2) Measurement Techniques For Modelling 295(34) Microwave Network Analyzers 296(11) Network Analyzer 296(5) Automatic Network Analyzer 301(2) Six-Port Network Analyzer 303(4) System Error Measurement and Correction 307(14) General Considerations 307(4) One-port Device Measurements 311(2) Two-port Measurements 313(4) Three-port and Multiport Measurements 317(2) Characterization of Connectors 319(2) Data Reduction Techniques 321(8) References 323(6) Part III Analysis Evaluation of Circuit Performance 329(42) Circuits Consisting of Two-Ports 330(8) Use of Symmetry in the Circuit Analysis 330(3) Analysis of Cascaded Two-Ports 333(4) Analysis of Arbitrarily Connected Two-Ports 337(1) Arbitrarily Connected Networks 338(15) Analysis Using Connection Scattering Matrix 338(3) Multiport Connection Method 341(2) An Example 343(4) Analysis by Subnetwork Growth Method 347(6) Circuits Consisting of Two-Dimensional Planar Components 353(18) Segmentation Method 353(6) Desegmentation Method 359(10) References 369(2) Sensitivity Analysis of Microwave Circuits 371(36) Finite Difference Method 373(1) Adjoint Network Method 373(15) Tellegens Theorem in Wave Variables 374(2) The Adjoint Network 376(4) Comparison with the Direct Method 380(2) Evaluation of Gradients for Subnetwork Growth Method 382(6) Evaluation of Differential Scattering Matrices 388(5) Sensitivity Invariants for Scattering Matrices 388(4) Differential S-Matrices for Typical Components 392(1) An Example of Evaluation of Sensitivities 393(4) Large Change Sensitivities Appendix 12.1 Differential Scattering Matrices 397(10) For some Typical Components 402 References 401(6) Tolerance Analysis 407(26) Worst-Case Analysis 408(15) Statistical Tolerance Analysis 423(10) Method of Moments 423(3) Monte-Carlo Analysis 426(1) Appendix 13.1 Some Results From Probability Theory and Statistics 427(3) References 430(3) Time Domain Analysis of Microwave Circuits 433(30) Transient Analysis of Transmission Lines 434(7) Laplace Transform Method 441(9) Companion Model Approach 450(6) State Variable Approach 456(7) References 460(3) Matrix Solution Techniques 463(42) Gaussian Elimination 464(5) Pivoting 469(1) L-U Factorization and F-B Substitution 470(8) L-U Decomposition 471(4) Forward Elimination and Back Substitution 475(3) Sparse Matrix Techniques 478(27) Reordering of Equations 479(7) Data Structures for Reordering 486(5) L-U Factorization and F-B Substitution 491(7) Remarks on Sparse Matrix Techniques 498(1) References 499(6) Part IV Optimization Introduction to Optimization 505(38) Basic Concepts and Definitions 507(8) Objective Functions for Circuit Optimization 515(5) General Considerations 515(1) Least pth Approximation 516(2) Minimax Approximation 518(2) Constraints 520(3) Transformation of Constraints 520(2) Penalty for Constraint Violation 522(1) Sequential Unconstrained Minimization Technique 522(1) One-Dimensional Optimization Techniques 523(20) Elimination Methods 524(6) Interpolation Methods 530(10) References 540(3) Direct Search Optimization Methods 543(20) Pattern Search Methods 543(7) Hooke and Jeeves Methods 544(2) Powells Method 546(2) Razor Search Method 548(2) Rotating Coordinates Method 550(3) The Simplex Method 553(10) References 561(2) Gradient Methods for Optimization 563(16) Steepest Descent Method 563(3) Generalized Newton-Raphson Method 566(1) Davidon-Fletcher-Powell Method 567(5) Optimization of Least Square Objective Functions 572(7) References 575(4) Part V CAD Programs A Microwave Circuit Analysis Program (MCAP) 579(40) Program Description 581(5) Flow Chart 581(1) Description of Subroutines 581(2) An Example 583(3) Instructions for Users 586(8) Program Listing 594(25) References 617(2) CAD Programs for Microwave Circuits 619(32) Les Besser Introduction 619(1) Integrated Design and Manufacturing System Concept 620(5) Summary of Microwave CAD Programs 625(26) Handy-Compact Circuit Analysis on HP-41C Handheld Calculator 626(2) Micro-Compact Circuit Optimization on HP-9845 B/T Desktop Computer 628(4) Super-Compact 632(5) Lumped Element Matching Synthesis with Ampsyn 637(2) Transmission Line Matching Network Synthesis with Cadsyn 639(4) Filsyn 643(5) References 648(3) Index 651