Preface to the Second Edition |
|
xiii | |
Preface to the First Edition |
|
xvii | |
Author |
|
xxi | |
Chapter 1 Introduction |
|
1 | (20) |
|
|
1 | (3) |
|
|
4 | (2) |
|
1.3 Importance of Analytical Results |
|
|
6 | (3) |
|
1.4 Physical Considerations |
|
|
9 | (4) |
|
1.5 Application of Computer Methods to Engineering Problems |
|
|
13 | (2) |
|
1.6 Outline and Scope of the Book |
|
|
15 | (6) |
|
|
15 | (1) |
|
|
16 | (1) |
|
1.6.3 Examples and Problems |
|
|
16 | (1) |
|
|
17 | (4) |
Chapter 2 Basic Considerations in Computer Methods |
|
21 | (38) |
|
|
21 | (2) |
|
2.2 Computational Procedure |
|
|
23 | (15) |
|
|
23 | (2) |
|
2.2.2 Programming Language |
|
|
25 | (5) |
|
|
30 | (1) |
|
2.2.4 Program Development |
|
|
31 | (4) |
|
|
31 | (3) |
|
2.2.4.2 Available Programs |
|
|
34 | (1) |
|
|
35 | (1) |
|
2.2.5 Serial versus Parallel Computing |
|
|
35 | (3) |
|
2.3 Numerical Errors and Accuracy |
|
|
38 | (10) |
|
|
40 | (2) |
|
|
42 | (3) |
|
2.3.3 Accuracy of Numerical Results |
|
|
45 | (1) |
|
2.3.4 Numerical Stability |
|
|
46 | (2) |
|
2.4 Iterative Convergence |
|
|
48 | (3) |
|
2.4.1 Conditions for Convergence |
|
|
49 | (1) |
|
2.4.2 Rate of Convergence |
|
|
50 | (1) |
|
2.4.3 Termination of Iteration |
|
|
50 | (1) |
|
|
51 | (3) |
|
|
52 | (1) |
|
2.5.2 Convergence Criterion |
|
|
52 | (1) |
|
2.5.3 Other Arbitrarily Chosen Variables |
|
|
53 | (1) |
|
|
54 | (2) |
|
|
56 | (3) |
Chapter 3 A Review of MATLAB® Programming |
|
59 | (26) |
|
|
59 | (1) |
|
|
59 | (11) |
|
|
59 | (2) |
|
|
61 | (1) |
|
3.2.3 Arrays and Vectorization |
|
|
62 | (1) |
|
|
63 | (2) |
|
|
65 | (1) |
|
|
66 | (1) |
|
3.2.7 Linear Algebraic Equations |
|
|
67 | (1) |
|
|
67 | (1) |
|
|
68 | (2) |
|
3.3 Ordinary Differential Equations |
|
|
70 | (2) |
|
|
72 | (4) |
|
|
76 | (2) |
|
|
78 | (3) |
|
|
81 | (1) |
|
|
82 | (1) |
|
|
83 | (2) |
Chapter 4 Taylor Series and Numerical Differentiation |
|
85 | (36) |
|
|
85 | (1) |
|
|
86 | (9) |
|
|
86 | (1) |
|
4.2.2 Finite Difference Calculus |
|
|
87 | (8) |
|
4.3 Direct Approximation of Derivatives |
|
|
95 | (3) |
|
4.4 Taylor-Series Approach and Accuracy |
|
|
98 | (11) |
|
4.4.1 Finite Difference Approximation of the First Derivative |
|
|
98 | (1) |
|
|
99 | (2) |
|
4.4.3 Higher-Order Derivatives |
|
|
101 | (2) |
|
4.4.4 Higher-Accuracy Approximations |
|
|
103 | (6) |
|
4.5 Polynomial Representation |
|
|
109 | (3) |
|
|
112 | (5) |
|
|
117 | (1) |
|
|
118 | (3) |
Chapter 5 Roots of Equations |
|
121 | (50) |
|
|
121 | (2) |
|
5.2 Search Method for Real Roots |
|
|
123 | (7) |
|
|
130 | (3) |
|
5.4 Regula Falsi and Secant Methods |
|
|
133 | (5) |
|
5.4.1 Regula Falsi Method |
|
|
133 | (1) |
|
|
134 | (4) |
|
5.5 Newton–Raphson Method and Modified Newton's Method |
|
|
138 | (9) |
|
5.5.1 Newton–Raphson Method |
|
|
138 | (3) |
|
5.5.2 Modified Newton's Method |
|
|
141 | (1) |
|
|
142 | (5) |
|
5.6 Successive Substitution Method |
|
|
147 | (3) |
|
|
150 | (12) |
|
|
151 | (2) |
|
5.7.2 Iterative Factorization of Polynomials |
|
|
153 | (5) |
|
|
158 | (2) |
|
|
160 | (2) |
|
|
162 | (1) |
|
|
162 | (9) |
Chapter 6 Numerical Solution of Simultaneous Algebraic Equations |
|
171 | (76) |
|
|
171 | (3) |
|
|
174 | (15) |
|
|
174 | (1) |
|
6.2.2 Computational Procedure |
|
|
175 | (3) |
|
|
178 | (2) |
|
6.2.3.1 III-Conditioned Set |
|
|
179 | (1) |
|
|
179 | (1) |
|
|
180 | (1) |
|
6.2.4 Matrix Inversion and Determinant Evaluation |
|
|
180 | (1) |
|
6.2.5 Tri-diagonal Systems |
|
|
181 | (8) |
|
6.3 Gauss–Jordan Elimination |
|
|
189 | (5) |
|
6.3.1 Mathematical Procedure |
|
|
189 | (1) |
|
6.3.2 Computational Scheme |
|
|
190 | (4) |
|
|
194 | (7) |
|
6.4.1 Matrix Decomposition |
|
|
194 | (2) |
|
6.4.2 Matrix Decomposition in MATLAIP |
|
|
196 | (1) |
|
|
197 | (4) |
|
6.5 Numerical Solution of Linear Systems by Matrix Inversion |
|
|
201 | (5) |
|
6.5.1 Computational Procedure |
|
|
202 | (2) |
|
6.5.2 Additional Considerations |
|
|
204 | (2) |
|
|
206 | (8) |
|
|
206 | (1) |
|
6.6.2 Jacobi and Gauss–Seidel Methods |
|
|
207 | (1) |
|
|
208 | (1) |
|
|
209 | (1) |
|
|
210 | (4) |
|
6.7 Homogeneous Linear Equations |
|
|
214 | (11) |
|
6.7.1 The Eigenvalue Problem |
|
|
215 | (5) |
|
|
220 | (4) |
|
6.7.2.1 Largest Eigenvalue |
|
|
220 | (1) |
|
6.7.2.2 Smallest Eigenvalue |
|
|
221 | (1) |
|
6.7.2.3 Intermediate Eigenvalues |
|
|
222 | (2) |
|
|
224 | (1) |
|
6.8 Solution of Simultaneous Nonlinear Equations |
|
|
225 | (9) |
|
6.8.1 Newton–Raphson Method |
|
|
226 | (1) |
|
6.8.2 Modified Jacobi and Gauss–Seidel Methods |
|
|
227 | (1) |
|
|
228 | (6) |
|
|
234 | (1) |
|
|
235 | (12) |
Chapter 7 Numerical Curve Fitting and Interpolation |
|
247 | (60) |
|
|
247 | (4) |
|
|
247 | (2) |
|
7.1.2 Interpolation and Extrapolation |
|
|
249 | (1) |
|
|
249 | (2) |
|
7.1.4 Use of MATLAB® Commands |
|
|
251 | (1) |
|
7.2 Exact Fit and Interpolation |
|
|
251 | (7) |
|
7.2.1 Exact Fit with an nth-Order Polynomial |
|
|
252 | (3) |
|
7.2.2 Uniformly Spaced Independent Variable |
|
|
255 | (3) |
|
7.3 Lagrange Interpolation |
|
|
258 | (4) |
|
7.4 Newton's Divided-Difference Interpolating Polynomial |
|
|
262 | (10) |
|
|
263 | (3) |
|
7.4.2 Uniformly Spaced Data |
|
|
266 | (2) |
|
|
268 | (4) |
|
7.5 Numerical Interpolation with Splines |
|
|
272 | (6) |
|
7.6 Method of Least Squares for a Best Fit |
|
|
278 | (15) |
|
7.6.1 Basic Considerations |
|
|
278 | (3) |
|
|
281 | (2) |
|
7.6.3 Best Fit with a Polynomial |
|
|
283 | (2) |
|
7.6.4 Nonpolynomial Forms |
|
|
285 | (8) |
|
|
286 | (7) |
|
7.7 Function of Two or More Independent Variables |
|
|
293 | (6) |
|
|
294 | (2) |
|
|
296 | (3) |
|
|
299 | (1) |
|
|
300 | (7) |
Chapter 8 Numerical Integration |
|
307 | (58) |
|
|
307 | (3) |
|
8.1.1 Engineering Examples |
|
|
309 | (1) |
|
8.2 Rectangular and Trapezoidal Rules for Integration |
|
|
310 | (12) |
|
8.2.1 The Rectangular Rule |
|
|
311 | (1) |
|
8.2.2 The Trapezoidal Rule |
|
|
312 | (1) |
|
|
313 | (9) |
|
|
115 | (200) |
|
|
315 | (1) |
|
|
316 | (2) |
|
|
318 | (4) |
|
8.3 Simpson's Rules for Numerical Integration |
|
|
322 | (10) |
|
8.3.1 Simpson's One-Third Rule |
|
|
322 | (2) |
|
8.3.2 Simpson's Three-Eighths Rule |
|
|
324 | (2) |
|
|
326 | (4) |
|
8.3.4 Use of MATLAB° Integration Commands |
|
|
330 | (2) |
|
8.4 Higher-Accuracy Methods |
|
|
332 | (8) |
|
8.4.1 Richardson Extrapolation |
|
|
332 | (2) |
|
8.4.2 Romberg Integration |
|
|
334 | (2) |
|
8.4.3 Higher-Order Newton–Cotes Formulas |
|
|
336 | (4) |
|
8.5 Integration with Segments of Unequal Width |
|
|
340 | (9) |
|
8.5.1 Unequally Spaced Data |
|
|
340 | (1) |
|
8.5.2 Adaptive Quadrature |
|
|
341 | (2) |
|
|
343 | (6) |
|
8.6 Numerical Integration of Improper Integrals.. |
|
|
349 | (7) |
|
8.6.1 Integrals with Infinite Limits |
|
|
350 | (1) |
|
|
351 | (5) |
|
|
356 | (1) |
|
|
356 | (1) |
|
|
357 | (8) |
Chapter 9 Numerical Solution of Ordinary Differential Equations |
|
365 | (80) |
|
|
365 | (5) |
|
9.1.1 Initial and Boundary Value Problems |
|
|
366 | (1) |
|
9.1.2 Reduction of Higher-Order Equations to First-Order Equations |
|
|
366 | (3) |
|
|
369 | (1) |
|
|
370 | (10) |
|
9.2.1 Computational Formula and Physical Interpretation of the Method |
|
|
370 | (2) |
|
9.2.2 Solution of a System of Equations |
|
|
372 | (2) |
|
9.2.3 Errors, Convergence, and Stability |
|
|
374 | (6) |
|
9.3 Improvements in Euler's Method |
|
|
380 | (4) |
|
|
380 | (3) |
|
9.3.2 Modified Euler's Method |
|
|
383 | (1) |
|
|
384 | (13) |
|
9.4.1 Computational Formulas |
|
|
386 | (3) |
|
9.4.2 Truncation Error and Accuracy |
|
|
389 | (2) |
|
9.4.3 System of Equations |
|
|
391 | (6) |
|
|
397 | (4) |
|
9.5.1 Adams Multistep Methods |
|
|
397 | (4) |
|
9.5.2 Additional Considerations |
|
|
401 | (1) |
|
9.6 Predictor–Corrector Methods |
|
|
401 | (15) |
|
|
402 | (1) |
|
|
403 | (1) |
|
|
404 | (1) |
|
|
405 | (1) |
|
9.6.5 Accuracy and Stability of Predictor–Corrector Methods |
|
|
406 | (4) |
|
9.6.5.1 Truncation Errors |
|
|
406 | (2) |
|
|
408 | (1) |
|
|
409 | (1) |
|
9.6.6 Simultaneous Equations |
|
|
410 | (1) |
|
9.6.7 Concluding Remarks on Predictor–Corrector Methods |
|
|
410 | (6) |
|
9.7 Boundary-Value Problems |
|
|
416 | (14) |
|
|
417 | (3) |
|
|
419 | (1) |
|
9.7.2 Finite Difference Methods |
|
|
420 | (3) |
|
9.7.3 Eigenvalue Problems |
|
|
423 | (7) |
|
|
430 | (2) |
|
|
432 | (13) |
Chapter 10 Numerical Solution of Partial Differential Equations |
|
445 | (64) |
|
|
445 | (4) |
|
|
445 | (1) |
|
|
446 | (2) |
|
10.1.3 Basic Considerations |
|
|
448 | (1) |
|
|
449 | (18) |
|
10.2.1 Numerical Solution with an Explicit Scheme |
|
|
450 | (3) |
|
10.2.2 Stability of Euler's (FTCS) Method |
|
|
453 | (1) |
|
|
454 | (2) |
|
10.2.4 Other Methods and Considerations |
|
|
456 | (2) |
|
10.2.5 Multidimensional Problems |
|
|
458 | (9) |
|
|
467 | (22) |
|
10.3.1 Finite Difference Approach |
|
|
467 | (5) |
|
10.3.2 Numerical Solution by Iterative and Direct Methods |
|
|
472 | (4) |
|
10.3.2.1 Point Relaxation |
|
|
474 | (2) |
|
|
476 | (1) |
|
|
476 | (1) |
|
10.3.4 Other Geometries and Boundary Conditions |
|
|
477 | (3) |
|
10.3.5 Finite Element and Other Solution Methods |
|
|
480 | (9) |
|
|
489 | (11) |
|
|
489 | (1) |
|
10.4.2 Method of Characteristics |
|
|
489 | (1) |
|
10.4.3 Finite Difference Methods |
|
|
490 | (10) |
|
|
500 | (2) |
|
|
502 | (7) |
Appendix A: Some Common Commands in MATLAB® |
|
509 | (4) |
Appendix B: Computer Programs in MATLAB® |
|
513 | (40) |
Appendix C: Computer Programs in FORTRAN |
|
553 | (38) |
References |
|
591 | (4) |
Index |
|
595 | |